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1 Exact coordinate descent
The idea of coordinate descent is to decompose a large optimisation problem into a sequence of one-
dimensional optimisation problems. The algorithm was first described for the minimization of quadratic
functions by Gauss and Seidel in [Seidel, 1874]. Coordinate descent methods have become unavoidable in
machine learning because they are very efficient for key problems, namely Lasso, logistic regression and
support vector machines. Moreover, the decomposition into small subproblems means that only a small
part of the data is processed at each iteration and this makes coordinate descent easily scalable to high
dimensions.

We first decompose the space of optimisation variables X into blocks X1 × . . .×Xn = X. A classical
choice when X = Rn is to choose X1 = . . . = Xn = R. We will denote Ui the canonical injection from
Xi to X, that is Ui is such that for all h ∈ Xi,

Uih = (0, . . . , 0︸ ︷︷ ︸
i−1 zeros

, h>, 0, . . . , 0︸ ︷︷ ︸
n−i zeros

)> ∈ X.

For a function f : X1 × . . .×Xn → R, we define the following algorithm.

Algorithm 1: Exact coordinate descent
Start at x0 ∈ X.
At iteration k, choose l = (k mod n) + 1 (cyclic rule) and define xk+1 ∈ X by{

x
(i)
k+1 = arg minz∈Xl

f(x
(1)
k , . . . , x

(l−1)
k , z, x

(l+1)
k , . . . , x

(n)
k ) if i = l

x
(i)
k+1 = x

(i)
k if i 6= l

Proposition 1 ([Warga, 1963]). If f is continuously differentiable and strictly convex and there exists
x∗ = arg minx∈X f(x), then the exact coordinate descent method (Alg. 1) converges to x∗.

Exercise 1 (least squares). f(x) = 1
2‖Ax− b‖

2
2 = 1

2

∑m
j=1(a>j x− bj)2

At each iteration, we need to solve in z the 1D equation

∂f

∂x(l)
(x

(1)
k , . . . , x

(l−1)
k , z, x

(l+1)
k , . . . , x

(n)
k ) = 0
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Figure 1: The successive iterates of the coordinate descent method on a 2D example. The function we
are minimising is represented by its level sets: the bluer is the circle, the lower is the function values.
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Figure 2: The function in Example 2

For all x ∈ Rn,
∂f

∂x(l)
(x) = a>l (Ax− b) = a>l alx

(l) + a>l (
∑
j 6=l

ajx
(j))− a>l b

so we get

z∗ = x
(l)
k+1 =

1

‖al‖22

(
− a>l (

∑
j 6=l

ajx
(j)
k ) + a>l b

)
= x

(l)
k −

1

‖al‖22

(
a>l (

n∑
j=1

ajx
(j)
k )− a>l b

)
Exercise 2 (non-differentiable function). f(x(1), x(2)) = |x(1) − x(2)| −min(x(1), x(2)) + I[0,1]2(x)

f is convex but not differentiable. If we nevertheless try to run exact coordinate descent, the algo-
rithm proceeds as x(1)1 = arg minz f(z, x

(2)
0 ) = x

(2)
0 , x(2)2 = arg minz f(x

(1)
1 , z) = x

(2)
0 , and so on. Thus

exact coordinate descent converges in two iterations to (x
(2)
0 , x

(2)
0 ): the algorithm is stuck on the non-

differentiability point on the line {x(1) = x(2)} and does not reach the minimiser (1, 1).

Exercise 3 (non-convex differentiable function).
f(x(1), x(2), x(3)) = −(x(1)x(2) + x(2)x(3) + x(3)x(1)) +

∑3
i=1 max(0, |x(i)| − 1)2
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As shown by [Powell, 1976], exact coordinate descent on this function started at the initial point
x(0) = (−1−ε, 1+ε/2,−1−ε/4) has a limit cycle around the 6 corners of the cube that are not minimisers
and avoids the 2 corners that are minimisers.

Exercise: Show Powell’s result.

Exercise 4 (Adaboost). The Adaboost algorithm [Collins et al., 2002] was designed to minimise the
exponential loss given by

f(x) =

m∑
j=1

exp(−yjh>j x).

At each iteration, we select the variable l such that l = arg maxi|∇if(x)| and we perform an exact
coordinate descent step along this coordinate.

This variable selection rule is called the greedy or Gauss-Southwell rule. Like the cyclic rule, it leads
to a converging algorithm but requires to compute the full gradient at each iteration. Greedy coordinate
descent is interesting in the case of the exponential loss because the gradient of the function has a few
very large coefficients and many negligible coefficients.

Exercise: Suppose that yj ∈ {−1, 1} and hj,i ∈ {−1, 0, 1} for all j, i. Give the explicit formulas of
∇if(x) and of the next update xk+1 knowing xk.

2 Coordinate gradient descent
Solving a one-dimensional optimisation problems is generally easy and the solution can be approximated
very well by algorithms like the bisection method. However, for the exact coordinate descent method, one
needs to solve a huge number of one-dimensional problems and the expense quickly becomes prohibitive.
Moreover, why should we solve to high accuracy the 1-dimensional problem and destroy this solution at
the next iteration?

The idea of coordinate gradient descent is to perform one iteration of gradient descent in the 1-
dimensional problem minz∈Xl

f(x
(1)
k , . . . , x

(l−1)
k , z, x

(l+1)
k , . . . , x

(n)
k ) instead of solving it completely. In

general, this reduces drastically the cost of each iteration while keeping the same convergence behaviour.

Algorithm 2: Coordinate gradient descent
Start at x0.
At iteration k, choose ik+1 ∈ {1, . . . , n} and define xk+1 by{

x
(i)
k+1 = x

(i)
k − γi∇if(xk) if i = ik+1

x
(i)
k+1 = x

(i)
k if i 6= ik+1

When choosing the cyclic or greedy rule, the algorithm does converge for any convex function f that
has a Lipschitz-continuous gradient and such that arg minx f(x) 6= ∅.

In fact we will assume that we actually know the coordinate-wise Lipschitz constants of the gradient
of f , namely the Lipschitz constants of the functions

gi,x : Xi → R

h 7→ f(x+ Uih) = f(x(1), . . . , x(i−1), x(i) + h, x(i+1), . . . , x(n))

We will denote Li = L(∇gi,x) this Lipschitz constant. Written in terms of f , this means that

∀x ∈ X,∀i ∈ {1, . . . , n},∀h ∈ Xi, ‖∇f(x+ Uih)−∇f(x)‖2 ≤ Li‖Uih‖2.

Lemma 2. If f has a coordinate-wise Lipschitz gradient with constants L1, . . . , Ln, then ∀x ∈ X,
∀i ∈ {1, . . . , n},∀h ∈ Xi,

f(x+ Uih) ≤ f(x) + 〈∇if(x), h〉+
Li
2
‖h‖2

proof. This is Taylor’s inequality applied to gi,x. Note that we do not require the function to be twice
differentiable.

page 3



M2 - Optimisation for Data Science O. Fercoq - A. Gramfort

Proposition 3 ([Beck and Tetruashvili, 2013]). Assume that f is convex, ∇f is Lipschitz continuous
and arg minx∈X f(x) 6= ∅. If ik+1 is chosen with the cyclic rule ik+1 = (k mod n) + 1 and ∀i, γi = 1

Li
,

then the coordinate gradient descent method (Alg. 2) satisfies

f(xk+1)− f(x∗) ≤ 4Lmax(1 + n3L2
max/L

2
min)

R2(x0)

k + 8/n

where R2(x0) = maxx,y∈X{‖x− y‖ : f(y) ≤ f(x) ≤ f(x0)}, Lmax = maxi Li and Lmin = mini Li.

The proof of this result is quite technical and in fact the bound is much more pessimistic than what
is observed in practice (n3 is very large if n is large). This is due to the fact that the cyclic rule behaves
particularly bad on some extreme examples. To avoid such traps, it has been suggested to randomise the
coordinate selection process.

Proposition 4 ([Nesterov, 2012]). Assume that f is convex, ∇f is Lipschitz continuous and
arg minx∈X f(x) 6= ∅. If ik+1 is randomly generated, independently of i1, . . . , ik and ∀i ∈ {1, . . . , n},
P(ik+1 = i) = 1

n and γi = 1
Li
, then the coordinate gradient descent method (Alg. 2) satisfies for all

x∗ ∈ arg minx f(x)

E[f(xk+1)− f(x∗)] ≤
n

k + n

(
(1− 1

n
)(f(x0)− f(x∗)) +

1

2
‖x∗ − x0‖2L

)
where ‖x‖2L =

∑n
i=1 Li‖x(i)‖22.

proof. This is a particular case of the method developed in the next section.

Comparison with gradient descent The iteration complexity of the gradient descent method is

f(xk+1)− f(x∗) ≤
L(∇f)

2(k + 1)
‖x∗ − x0‖22

This means that to get an ε-solution (i.e., such that f(xk)−f(x∗) ≤ ε), we need at most L(∇f)2ε ‖x∗−x0‖
2
2

iterations. What is most expensive in gradient descent is the evaluation of the gradient ∇f(x) with a
cost C, so the total cost of the method is

Cgrad = C
L(∇f)

2ε
‖x∗ − x0‖22

Neglecting the effect of randomisation, we usually have an ε-solution with coordinate descent in
n
ε

(
(1 − 1

n )(f(x0) − f(x∗)) + 1
2‖x∗ − x0‖

2
L

)
iterations. The cost of one iteration of coordinate descent is

of the order of the cost of evaluation one partial derivative ∇if(x), with a cost c, so the total cost of the
method is

Ccd = c
n

ε

(
(1− 1

n
)(f(x0)− f(x∗)) +

1

2
‖x∗ − x0‖2L

)
How do these two quantities compare?
Let us consider the case where f(x) = 1

2‖Ax− b‖
2
2.

• Computing ∇f(x) = A>(Ax− b) amounts to updating the residuals r = Ax− b (one matrix vector
product and a sum) and computing one matrix vector product. We thus have C = O(nnz(A)).

• Computing ∇if(x) = e>i A
>(Ax− b) amounts to

1. updating the residuals r = Ax− b: one scalar-vector product and a sum since we have rk+1 =

rk + (x
(ik+1)
k+1 − x(ik+1)

k )Aeik+1
,

2. computing one vector-vector product (the ith column of A versus the residuals).

Thus c = O(nnz(Aeik+1
)) = O(nnz(A)/n) = C/n if the columns of A are equally sparse.

• f(x0)− f(x∗) ≤ L(∇f)
2 ‖x0 − x∗‖22 and it may happen that f(x0)− f(x∗)� L(∇f)

2 ‖x0 − x∗‖22
• L(∇f) = λmax(A>A) and Li = a>i ai with ai = Aei. We always have Li ≤ L(∇f) and it may

happen that Li = O(L(∇f)/n).

To conclude, in the quadratic case, Ccd ≤ Cgrad and we may have Ccd = O(Cgrad/n).
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3 Proximal coordinate descent
We are often interested in solving problems of the type

min
x∈X

F (x) = min
x∈X

f(x) + g(x) (1)

where f and g are convex so that F = f + g is convex, f has a Lipschitz continuous gradient and g may
be nonsmooth but is separable. This means that for all x ∈ X = X1 × . . . Xn,

g(x) =

n∑
i=1

gi(x
(i)).

We can solve this kind of problems with the proximal coordinate descent method (Alg. 3,
[Tseng, 2001]), which is also using the coordinate-wise Lipschitz constant.

Algorithm 3: Proximal coordinate descent
Start at x0 ∈ X.
At iteration k, choose ik+1 ∈ {1, . . . , n} and define xk+1 ∈ X byx

(i)
k+1 = arg min

x∈Xi

gi(x) + f(xk) + 〈∇if(xk), x− x(i)k 〉+
Li
2
‖x− x(i)k ‖

2 if i = ik+1

x
(i)
k+1 = x

(i)
k if i 6= ik+1

For this algorithm to be practical, we need to be able to compute efficiently

proxγ,g(y) = arg min
x∈X

g(x) +
1

2
‖x− y‖2γ−1 ,

the proximal operator of g (remember that ‖x‖2γ−1 =
∑n
i=1

1
γi
‖x(i)‖22).

Exercise 5 (Simple proximal operators).

• Indicator of a box: if g(x) = I[a,b](x), then proxγ,g(y) = max(a,min(x, b)). This is the projection
on [a, b] (it does not depend on γ).

• Absolute value: if g(x) = λ|x|, then proxγ,g(y) = sign(y) max(0, |y| − γλ). This is the soft-
thresholding operator.

We define

x̄k+1 = proxL−1,g(xk − L−1∇f(xk)) = arg min
x∈X

g(x) + f(xk) + 〈∇f(xk), x− xk〉+
1

2
‖x− xk‖2L,

so that

x
(i)
k+1 =

{
x̄
(i)
k+1 if i = ik+1

x
(i)
k if i 6= ik+1

Lemma 5. For all γ ∈ Rn+∗ and x ∈ X

g(x̄k+1)+〈∇f(xk), xk+1−xk〉+
1

2
‖xk+1−xk‖2γ−1 ≤ g(x)+〈∇f(xk), x−xk〉+

1

2
‖x−xk‖2γ−1−

1

2
‖xk+1−x‖2γ−1

proof. The function ψ : x 7→ g(x)+〈∇f(xk), x−xk〉+ 1
2‖x−xk‖

2
γ−1 is strongly convex and its minimiser

is x̄k+1. The inequality is just the strong convexity inequality of this function with respect to the norm
‖·‖2γ−1 and applied at x and x̄k+1.

Theorem 6 ([Richtárik and Takáč, 2014]). The proximal coordinate descent method (Alg. 3) with the
random selection rule applied to Problem 1 satisfies for all x∗ ∈ arg minx F (x)

E[F (xk+1)− F (x∗)] ≤
n

k + n

(
(1− 1

n
)(F (x0)− F (x∗)) +

1

2
‖x∗ − x0‖2L

)
where ‖x‖2L =

∑n
i=1 Li‖x(i)‖22.
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proof. By definition of the algorithm, xk+1 − xk = Uik+1
(x

(ik+1)
k+1 − x(ik+1)

k ), so by Lemma 2,

f(xk+1) ≤ f(xk) + 〈∇ik+1
f(xk), x

(ik+1)
k+1 − x(ik+1)

k 〉+
Lik+1

2
‖x(ik+1)

k+1 − x(ik+1)
k ‖2

= f(xk) + 〈∇f(xk), xk+1 − xk〉+
1

2
‖xk+1 − xk‖2L (2)

Using the notation x̄k+1 = arg minx∈X g(x) + f(xk) + 〈∇f(xk), x− xk〉+ 1
2‖x− xk‖

2
L, we have

x
(i)
k+1 =

{
x̄
(i)
k+1 if i = ik+1

x
(i)
k if i 6= ik+1

Using the conditional expectation knowing Fk = (i1, . . . ik), we get

E[x
(i)
k+1|Fk] = P(ik+1 = i)x̄

(i)
k+1 + P(ik+1 6= i)x

(i)
k =

1

n
x̄
(i)
k+1 + (1− 1

n
)x

(i)
k

E[〈∇if(xk), x
(i)
k+1 − x

(i)
k 〉|Fk] = P(ik+1 = i)〈∇if(xk), x̄

(i)
k+1 − x

(i)
k 〉+ P(ik+1 6= i)〈∇if(xk), x

(i)
k − x

(i)
k 〉

=
1

n
〈∇if(xk), x̄

(i)
k+1 − x

(i)
k 〉

E[〈∇f(xk), xk+1 − xk〉|Fk] =

n∑
i=1

E[〈∇if(xk), x
(i)
k+1 − x

(i)
k 〉|Fk] =

1

n
〈∇f(xk), x̄k+1 − xk〉 (3)

E[
1

2
‖xk+1 − xk‖2L|Fk] =

n∑
i=1

E[
Li
2
‖x(i)k+1 − x

(i)
k ‖

2|Fk] =
1

2n
‖x̄k+1 − xk‖2L (4)

E[g(xk+1)− g(xk)|Fk] =

n∑
i=1

E[gi(x
(i)
k+1)− gi(x(i)k )|Fk] =

1

n
(g(x̄k+1)− g(xk)) (5)

Combining (3), (4) and (5) with (2), we get

E[g(xk+1) + f(xk+1)|Fk] ≤ E[g(xk+1)|Fk] + E
[
f(xk) + 〈∇f(xk), xk+1 − xk〉+

1

2
‖xk+1 − xk‖2L

∣∣∣Fk]
= (1− 1

n
)g(xk) +

1

n
g(x̄k+1) + f(xk) +

1

n
〈∇f(xk), x̄k+1 − xk〉+

1

2n
‖x̄k+1 − xk‖2L

Using Lemma 5 with x = xk, we get

E[F (xk+1)|Fk] = E[g(xk+1) + f(xk+1)|Fk] ≤ g(xk) + f(xk)− 1

n
‖x̄k+1 − xk‖22

≤ g(xk) + f(xk) = F (xk) (6)

Then, using Lemma 5 again, with x = x∗, we get

E[F (xk+1)|Fk] = E[g(xk+1) + f(xk+1)|Fk]

≤ (1− 1

n
)g(xk) + f(xk) +

1

n
g(x∗) +

1

n
〈∇f(xk), x∗ − xk〉+

1

2n
‖x∗ − xk‖2L −

1

2n
‖x∗ − x̄k+1‖2L

We remark that

E[
1

2
‖x∗ − xk‖2L −

1

2
‖x∗ − xk+1‖2L|Fk] =

1

2n
‖x∗ − xk‖2L −

1

2n
‖x∗ − x̄k+1‖2L,

so that

E[F (xk+1)|Fk] ≤ (1− 1

n
)g(xk) + f(xk) +

1

n
g(x∗) +

1

n
〈∇f(xk), x∗ − xk〉

+
1

2
‖x∗ − xk‖2L −

1

2
E[‖x∗ − xk+1‖2L|Fk].

We use the convexity of f :

E[F (xk+1)|Fk] ≤ (1− 1

n
)(g(xk) + f(xk)) +

1

n
(g(x∗) + f(x∗)) +

1

2
‖x∗ − xk‖2L −

1

2
E[‖x∗ − xk+1‖2L|Fk].
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We rearrange and we apply total expectation:

E[F (xk+1)− F (x∗) +
1

2
‖x∗ − xk+1‖2L] ≤ E[(1− 1

n
)(F (xk)− F (x∗)) +

1

2
‖x∗ − xk‖2L].

Summing for k from 0 to K-1 yields

E[F (xK+1)− F (x∗)] +
1

2
E[‖x∗ − xK+1‖2L] +

K−1∑
k=1

E[
1

n
(F (xk)− F (x∗)]

≤ (1− 1

n
)(F (x0)− F (x∗)) +

1

2
‖x∗ − x0‖2L].

Using (6) and the fact that E[‖x∗ − xK+1‖2L] ≥ 0,

(1 +
k

n
)E[F (xK+1)− F (x∗)] ≤ (1− 1

n
)(F (x0)− F (x∗)) +

1

2
‖x∗ − x0‖2L]

We just need to divide by n
k+1 to conclude.

Exercise 6 (Lasso). Proximal coordinate descent is widely used to solve the Lasso problem given by

min
x∈Rp

1

2
‖y − Zx‖22 + λ‖x‖1

Here, f(x) = 1
2‖y − Zx‖22 is differentiable while g(x) = λ‖x‖1 is a non-differentiable function whose

proximal operator is the soft-thresholding operator.

Exercise 7 (Multi-task Lasso). In the multi-task framework, the Lasso problem can be generalised as

min
x∈Rp×q

1

2
‖Y − Zx‖2F + λ

p∑
j=1

‖xj,:‖2.

Here, the optimisation variable is a p × q matrix. One can see that the nonsmooth part of the objective
is g(X) = λ

∑p
j=1 ‖xj,:‖2. This function is not separable when we consider the entries of x one by one

but it is separable if we group these entries column-wise. Hence, we can consider block coordinate descent
with p blocks of size q for the resolution of the multi-task Lasso problem.

Exercise 8 (`1/`2-regularised multinomial logistic regression). Logistic regression is famous for classi-
fication problems. One observes for each i ∈ [n] a class label ci ∈ {1, . . . , q} and a vector of features
zi ∈ Rp. This information can be recast into a matrix Y ∈ Rn×q filled by 0’s and 1’s: Yi,k = 1{ci=k}.
A matrix B ∈ Rp×q is formed by q vectors encoding the hyperplanes for the linear classification. The
multinomial `1/`2 regularized regression reads:

min
B∈Rp×q

n∑
i=1

(
q∑

k=1

−Yi,kz>i B:,k + log

(
q∑

k=1

exp
(
z>i B:,k

)))
+ λ

p∑
j=1

‖Bj,:‖2,

Like the multi-task Lasso problem, this problem can be solved with proximal coordinate descent as long as
we consider blocks of variables corresponding to the columns of B rather than single variables.

Exercise:

1. Find the proximal operator of the non-smooth function g(B) = λ
∑p
j=1 ‖Bj,:‖2.

2. Give the expression of the partial derivatives of the smooth function

f(B) =

n∑
i=1

(
q∑

k=1

−Yi,kz>i B:,k + log

(
q∑

k=1

exp
(
z>i B:,k

)))

3. Give an estimate of the p block-wise Lipschitz constants of ∇f .

4. Write the proximal coordinate descent method for `1/`2-regularised multinomial logistic regression.
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4 Stochastic dual coordinate ascent for support vector machines
In this section, we focus on the linear Support Vector Machines (SVM) problem

min
w∈Rp

C

n∑
i=1

max(0, 1− yiz>i w) +
1

2
‖w‖22

where C is a positive real number, y ∈ Rn and ∀i, zi ∈ Rp. Note that we consider the formulation
without intercept. The objective function contains a non-smooth and non-separable term so we cannot
apply coordinate descent to it.

However, a dual formulation of the SVM problem is given by

max
α∈Rn

−1

2

p∑
j=1

( n∑
i=1

Zi,jyiα
(i)
)2

+

n∑
i=1

α(i) − I[0,C]n(α).

The objective function of this problem does decompose into a differentiable concave function f(α) =

− 1
2

∑p
j=1

(∑n
i=1 Zi,jyiα

(i)
)2

+
∑n
i=1 α

(i) and a nonsmooth concave and separable function g(α) =
−I[0,C]n(α). Stochastic Dual Coordinate Ascent (SDCA) is proximal coordinate ascent (the version
of coordinate descent for concave functions) on this problem.

Exercise 9. Write an implement of SDCA. It may be useful to maintain “residuals” wk defined by
w

(j)
k =

∑n
i=1 Zi,jyiα

(i)
k for all j ∈ {1, . . . , p}.

Even if we are running the algorithm in the dual, we are interested in the primal problem. The
following result shows that we can recover a good primal solution from the dual solution and gives
theoretical guarantees for the convergence in the primal.

Theorem 7 ([Shalev-Shwartz and Zhang, 2013]). Let us define a primal point wk = Z>Diag (y)αk,
where (αk)k≥0 is generated by SDCA. The duality gap satisfies for all K ≥ n,

E
[ 1

K

2K−1∑
k=K

P (wk)−D(αk)
]
≤ n

K + n

(
(1− 1

n
)(D(α∗)−D(α0)) +

1

2
‖α∗ − α0‖2L

)
+

n

2K
C2

n∑
i=1

Li

where the primal value is P (wk) = C
∑n
i=1 max(0, 1 − yiz>i wk) + 1

2‖wk‖
2
2, the dual value is D(αk) =

− 1
2‖Z

>Diag (y)αk‖22 +
∑n
i=1 α

(i)
k − I[0,C]n(αk) and ∀i, Li = y2i ‖zi‖2.

proof. As SDCA solves the dual problem with coordinate ascent, by Theorem 6,

E[D(α∗)−D(αk+1)] ≤ n

k + n

(
(1− 1

n
)(D(α∗)−D(α0)) +

1

2
‖α∗ − α0‖2L

)
.

The goal of the theorem is to upper bound E[P (wk)−D(αk)] by quantities involving E[D(α∗)−D(αk+1)].
Note that by weak duality, P (wk) − D(αk) ≥ D(α∗) − D(αk+1) but what we need is an inequality in
the other way. For this, we will need to use the fact that (αk)k≥0 is generated by the coordinate ascent
method.

Using the feasibility of αk and the definition of wk, we can simplify D(αk+1) as

D(αk+1) = −1

2
‖Z>Diag (y)αk+1‖22 +

n∑
i=1

α
(i)
k+1 − I[0,C]n(αk+1) = −1

2
‖wk+1‖2 + e>αk+1

As αk+1 = αk + Uik+1
(ᾱ

(ik+1)
k+1 − α(ik+1)

k ), wk+1 = wk + zik+1
yik+1

(ᾱ
(ik+1)
k+1 − α(ik+1)

k ) and

D(αk+1) = −1

2
‖wk + zik+1

yik+1
(ᾱ

(ik+1)
k+1 − α(ik+1)

k )‖2 + e>αk + ᾱ
(ik+1)
k+1 − α(ik+1)

k

To simplify notations, we will write here i = ik+1. Note that

ᾱ
(i)
k+1 = arg max

a∈[0,C]
(yiziZ

>Diag (y)αk + 1)(a− α(i)
k )− ‖yizi‖

2

2
(a− α(i)

k )2
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= arg max
a∈[0,C]

−1

2
‖wk + ziyi(a− α(i)

k )‖2 + a− α(i)
k .

So let us consider φ : x 7→ C max(0, 1− x), u ∈ −∂φ(yiz
>
i wk) ⊆ [0, C] and s ∈ [0, 1].

D(αk+1) = max
a∈[0,C]

−1

2
‖wk + ziyi(a− α(i)

k )‖2 + e>αk + a− α(i)
k

≥ −1

2
‖wk + ziyi((su+ (1− s)α(i)

k )− α(i)
k )‖2 + e>αk + (su+ (1− s)α(i)

k )− α(i)
k

≥ −1

2
‖wk + ziyis(u− α(i)

k )‖2 + e>αk + s(u− α(i)
k )

= −1

2
‖wk‖2 −

s2

2
‖ziyi‖22(u− α(i)

k )2 − s(u− α(i)
k )yiz

>
i wk + e>αk + s(u− α(i)

k )

= D(αk)− s2

2
‖ziyi‖22(u− α(i)

k )2 − s(u− α(i)
k )yiz

>
i wk + s(u− α(i)

k )

As u ∈ −∂φ(yiz
>
i wk) ⊆ [0, C] and φ∗(q) = q+I[−C,0](q), Fenchel-Young equality leads to: φ(yiz

>
i wk)−u =

−uyiz>i wk. Hence,

D(αk+1) ≥ D(αk)− s2

2
‖ziyi‖22(u− α(i)

k )2 + sφ(yiz
>
i wk) + sα

(i)
k yiz

>
i wk − sα

(i)
k

Applying conditional expectation, we get

E[D(αk+1)|Fk] ≥ D(αk)− s2

2n

n∑
i=1

‖ziyi‖22(u− α(i)
k )2 +

s

n

n∑
i=1

(
φ(yiz

>
i wk) + α

(i)
k yiz

>
i wk − α

(i)
k

)
Now,

P (wk)−D(αk) = C

n∑
i=1

max(0, 1− yiz>i wk) +
1

2
‖wk‖22 − (−1

2
‖wk‖2 + e>αk)

=

n∑
i=1

φ(yiz
>
i wk) + α

(i)
k yiz

>
i wk − α

(i)
k

So that

E[D(αk+1)|Fk]−D(αk) ≥ − s
2

2n

n∑
i=1

‖ziyi‖22(u− α(i)
k )2 +

s

n
(P (wk)−D(αk))

≥ − s
2

2n

n∑
i=1

(‖ziyi‖22)C2 +
s

n
(P (wk)−D(αk))

where the last inequality derives from α
(i)
k ∈ [0, C] and u ∈ [0, C].

We apply total expectation and we sum for k from K1 to K − 1:

s

n

K−1∑
k=K1

E[P (wk)−D(αk)] ≤ E[D(αK)]− E[D(αK1)] +
s2

2n
C2

n∑
i=1

(‖ziyi‖22)(K −K1)

≤ E[D(α∗)]− E[D(αK1
)] +

s2

2n
C2

n∑
i=1

(‖ziyi‖22)(K −K1)

≤ c0n

K1 + n
+
s2

2n
C2

n∑
i=1

(‖ziyi‖22)(K −K1)

where c0 = (1 − 1
n )(D(α∗) − D(α0)) + 1

2‖α∗ − α0‖2L. Choosing K = 2K1 and s = n
K1

, we obtain, for
K1 ≥ n (because we need s ≤ 1)

1

K1

2K1−1∑
k=K1

E[P (wk)−D(αk)] ≤ c0n

K1 + n
+

n

2K1
C2

n∑
i=1

(‖ziyi‖22)
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