(Quasi-)Newton methods

Alexandre Gramfort

Master 2 Data Science, Univ. Paris Saclay Optimisation for Data Science

Table of Contents

- [Variable metric](#page-11-0)
- [Quasi-Newton](#page-17-0)
- [Non-linear least-squares](#page-40-0)

Outline

So far you have seen:

- gradient descent
- **•** proximal gradient descent
- accelerated gradient descent
- (proximal) coordinate descent
- **•** conjugate gradient

Now

- **•** Newton methods
- Quasi-Newton methods
- Methods dedicated to non-linear least squares

Quasi-Newton and in particular L-BFGS are still heavily used to tackle smooth potentially large scale optim problems in machine learning (e.g. ℓ_2 logistic regression, conditional random fields)

Not seen in the course:

- \bullet Prox-Newton methods for the twice differentiable $+$ proximable penalty case
- Constrained methods (x is constrained to a subset of \mathbb{R}^n)
- Stochastic quasi-Newton methods (when f is a sum)

Remark: State-of-the-art solvers like liblinear are combining Prox-Newton and coordinate descent methods for logistic regression.

This course is largely based on the book:

Wright and Nocedal, Numerical Optimization, 1999, Springer, Chapters 6 and 8.

Newton method

It is used to find the zeros of a differentiable non-linear function g :

Find x such that
$$
g(x) = 0
$$
, where $g : \mathbb{R}^n \to \mathbb{R}^n$.

Given a starting point x_0 , Newton method consists in iterating:

$$
x_{k+1} = x_k - g'(x_k)^{-1} g(x_k)
$$

where $g'(x)$ is the derivative (Jacobian) of g at point x . We have that:

- $g'(x_k)$ is matrix in $\mathbb{R}^{n \times n}$
- each iteration requires to solve a linear system.

Newton method in 1d

Newton method?

Applying this method to the optimization problem:

 $\min_{x \in \mathbb{R}^n} f(x)$

consists in setting $g(x) = \nabla f(x)$, i.e., looking for stationary points (i.e. $\nabla f(x) = 0$).

The iterations read:

$$
x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k) .
$$

Newton method is particularly interesting as its convergence is quadratic l<mark>ocally</mark> around x*, i.e.:

$$
||x_{k+1}-x^*|| \leq \gamma ||x_k-x^*||^2, \gamma > 0.
$$

Finding Newton's algorithm

Assuming f is twice differentiable, the Taylor expansion at order 2 of f at x reads:

$$
\forall h \in \mathbb{R}^n, f(x+h) = \underbrace{f(x) + \nabla f(x)^\top h + \frac{1}{2} h^\top \nabla^2 f(x) h}_{Q_x(h)} + o(\Vert h \Vert^2)
$$

Exercise

Can you minimize $Q_x(h)$ with respect to h?

Convergence of Newton method

Theorem (Convergence of Newton method)

Let $g : \mathbb{R}^n \to \mathbb{R}^n$ assumed twice differentiable C^2 , and $x^* \in \mathbb{R}^n$ an isolated zero of $g(g(x^*) = 0)$. Assuming that $g'(x^*)$ is invertible, there exists a closed ball β centered on x^* , such that for every $x_0 \in \mathcal{B}$, the sequence x_k obtained with Newton algorithm stays in B and converges towards x^* . Furthermore, there is a constant $\gamma>0$, such that $\|x_{k+1}-x^*\|\leq \gamma \|x_k-x^*\|^2$.

\rightarrow See proof in lecture notes.

Remark: Convergence of Newton is local. The method may diverge if the initial point is too far from x^*

Remark: That is why Newton should be coupled with a line search strategy:

$$
x_{k+1} = x_k - \rho_k \nabla^2 f(x_k)^{-1} \nabla f(x_k)
$$

where $\rho_k > 0$ is a stepsize found by line search (Wolfe conditions).

Newton on quadratic function

Exercise

Show that for a quadratic function

$$
f(x) = \frac{1}{2}x^{\top}Ax - b^{\top}x + c, x \in \mathbb{R}^{n}
$$

with A symmetric positive definite, Newton method converges in one iteration independently of the choice of x_0 .

Remark: Newton is therefore not affected by the conditioning of the problem (not like Gradient descent).

 \rightarrow See notebook.

Newton on a non-convex problem

- Newton's method finds the stationnary points ($\nabla f = 0$).
- It is attracted to saddle points.
- Newton's direction may not be a descent direction:

$$
\nabla f(x_k)^\top \left[(\nabla^2 f(x_k))^{-1} \nabla f(x_k) \right] < 0
$$

• To guarantee one has a descent direction one needs to regularize the Hessian and in practice one needs to use a line search:

$$
x_{k+1} = x_k - \rho_k (\nabla^2 f(x_k) + \lambda I_n)^{-1} \nabla f(x_k)
$$

where $\lambda > 0$ is the regularization parameter and ρ_k is a stepsize found by line search.

Remark: line search is mandatory also for convex problems.

Table of Contents

Variable metric

The idea behind variable metric methods consists in using iterations of the form

$$
\begin{cases}\n d_k = -B_k g_k, \\
 x_{k+1} = x_k + \rho_k d_k,\n\end{cases}
$$

where $g_k = \nabla f(x_k)$, B_k is a positive definite matrix and $\rho_k \geq 0$ is a step size.

Remark: If B_k is a positive definite matrix $-B_k g_k$ is a descent direction.

 \rightarrow If $B_k = I_n$, it corresponds to gradient descent. \rightarrow Setting $B_k = B$ is the fixed metric case.

Fixed metric case

When minimizing

$$
\min_{x\in\mathbb{R}^n}f(x)
$$

one can set $x = Cy$ with C invertible (change of variable). Let us denote $\tilde{f}(y) = f(Cy)$. This leads to:

$$
\nabla \tilde{f}(y) = C^{\top} \nabla f(Cy) .
$$

Gradient descent applied to $\tilde{f}(y)$ reads:

$$
y_{k+1} = y_k - \rho_k C^{\top} \nabla f(Cy_k)
$$

which means using $B = CC^{\top}$ as it is equivalent to:

$$
x_{k+1} = x_k - \rho_k CC^{\top} \nabla f(x_k) .
$$

Question: How would you choose C for quadratic problem?

Quadratic case

Theorem (Preconditioned gradient descent)

Let $f(x)$ a positive definite quadratic form with Hessian A, and B a positive definite matrix. The preconditioned gradient algorithm:

$$
\begin{cases}\nx_0 = \text{fixed}, \\
x_{k+1} = x_k - \rho_k \text{Bg}_k, \ \rho_k \text{ optimal}\n\end{cases}
$$

has a linear convergence: $||x_{k+1} - x^*|| \leq \gamma ||x_k - x^*||$ where:

$$
\gamma = \frac{\chi(BA) - 1}{\chi(BA) + 1} < 1 \enspace .
$$

 $\chi(M) = \lambda_1/\lambda_n$ is the Euclidian conditioning *i.e.*, ratio of largest and lowest eigenvalues (≥ 1).

[Newton](#page-1-0) [Variable metric](#page-11-0) [Quasi-Newton](#page-17-0) [Non-linear least-squares](#page-40-0)

Quadratic case

So we have a linear convergence:

$$
||x_{k+1} - x^*|| \leq \gamma ||x_k - x^*||
$$

where:

$$
\gamma = \frac{\chi(B\mathsf{A})-1}{\chi(B\mathsf{A})+1} < 1 \enspace .
$$

Remark

The lower the conditioning of BA, the faster is the algorithm. One cannot set $B=A^{-1}$ as it would imply having already solved the problem, but this however suggests to use B so that it approximates A^{-1} . This is the idea behind quasi-Newton methods.

Drawbacks of Newton's method

- Quadratic convergence is an interesting property, but most of the time, Newton's method is too costly!
- Computing the Hessian is n times more costly in time and memory than the gradient
- If the problem is non-convex, regularization is hard and costly
- Then, one needs to compute $H^{-1}\nabla f(x)\to O(n^3)$
- What if $n = 10^3$?

Idea of quasi-Newton methods:

mimic Newton's direction without the computational load.

Table of Contents

[Newton](#page-1-0) **[Variable metric](#page-11-0) [Quasi-Newton](#page-17-0) Constanting Members [Non-linear least-squares](#page-40-0)**

Quasi-Newton

A quasi-Newton method reads

$$
\begin{cases}\n d_k = -B_k g_k, \\
 x_{k+1} = x_k + \rho_k d_k,\n\end{cases}
$$

or

$$
\begin{cases}\n d_k = -H_k^{-1}g_k, \\
 x_{k+1} = x_k + \rho_k d_k,\n\end{cases}
$$

where B_k (resp. H_k) is a matrix which aims to approximate the inverse of the Hessian (resp. the Hessian) of f at x_k .

Question: How to achieve this?

Quasi-Newton

One can start with $B_0 = I_n$ how to update B_k at every iteration?

Idea: apply a Taylor expansion on the gradient, notice that at point x_k , the gradient and the Hessian are such that:

$$
g_{k+1} = g_k + \nabla^2 f(x_k)(x_{k+1} - x_k) + \epsilon (x_{k+1} - x_k) .
$$

Towards convergence one should have:

$$
g_{k+1}-g_k\approx \nabla^2 f(x_k)(x_{k+1}-x_k) .
$$

Quasi-Newton relation (or secant condition)

Definition (Quasi-Newton relation)

Two matrices B_{k+1} and H_{k+1} verify the quasi-Newton relation (or secant condition) if:

$$
H_{k+1}(x_{k+1} - x_k) = \nabla f(x_{k+1}) - \nabla f(x_k)
$$

or

$$
x_{k+1}-x_k=B_{k+1}(\nabla f(x_{k+1})-\nabla f(x_k))
$$

Problem: How to update B_k keeping it positive definite?

[Newton](#page-1-0) **[Variable metric](#page-11-0) [Quasi-Newton](#page-17-0) Constanting Members [Non-linear least-squares](#page-40-0)**

Update formula of Hessian

The update strategy at iteration

$$
\begin{cases}\n d_k = -B_k g_k, \\
 x_{k+1} = x_k + \rho_k d_k,\n\end{cases}
$$

is to correct B_k with a symmetric matrix Δ_k :

$$
B_{k+1}=B_k+\Delta_k
$$

such that the quasi-Newton relation (secant condition) holds:

$$
x_{k+1} - x_k = B_{k+1}(g_{k+1} - g_k)
$$

with B_{k+1} positive definite, assuming B_k is positive definite. **Idea:** Use rank 1 or 2 matrices for Δ_k

Broyden formula (known as SR1)

Let's consider a rank 1 correction on the Hessian:

$$
H_{k+1} = H_k + \sigma v v^\top \quad , \quad \sigma = \pm 1, v \in \mathbb{R}^n
$$

The matrix H_{k+1} should verify the secant condition: $y_k = H_{k+1} s_k$, where $y_k = g_{k+1} - g_k$ and $s_k = x_{k+1} - x_k$. It follows that:

$$
y_k = H_k s_k + (\sigma \mathbf{v}^\top s_k) \mathbf{v} \Rightarrow \exists \delta \in \mathbb{R}, \mathbf{v} = \delta(y_k - H_k s_k)
$$

Using the equality it leads to:

$$
y_k - H_k s_k = \sigma \delta^2 [s_k^{\top} (y_k - H_k s_k)] (y_k - H_k s_k)
$$

this imposes that:

$$
\sigma = \text{sign}[s_k^{\top} (y_k - H_k s_k)] \quad \delta = \pm |s_k^{\top} (y_k - H_k s_k)|^{-1/2}
$$

This leads to:

$$
H_{k+1} = H_k + \frac{(y_k - H_k s_k)(y_k - H_k s_k)^\top}{(y_k - H_k s_k)^\top s_k}
$$

Broyden formula (known as SR1)

Starting from:

$$
H_{k+1} = H_k + \frac{(y_k - H_k s_k)(y_k - H_k s_k)^\top}{(y_k - H_k s_k)^\top s_k}
$$

and using the matrix inversion lemma (Woordbury-Sherman-Morrison) leads to:

$$
B_{k+1} = B_k + \frac{(s_k - B_k y_k)(s_k - B_k y_k)^{\top}}{(s_k - B_k y_k)^{\top} y_k} ,
$$

also known as Broyden or SR1 formula.

Theorem

Let f a quadratic form positive definite. Let us consider the method that, starting for x_0 , iterates:

$$
x_{k+1} = x_k + s_k ,
$$

where the vectors s_k are linearly independent. Then the sequence of matrices starting by B_0 and defined as:

$$
B_{k+1} = B_k + \frac{(s_k - B_k y_k)(s_k - B_k y_k)^\top}{(s_k - B_k y_k)^\top y_k} ,
$$

where $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$, converges in less than n iterations towards A^{-1} , the inverse of the Hessian of f.

\rightarrow Cf. proof in lecture notes

Remark: No guarantee that the matrices B_k are positive definite, even if the function f is quadratic and $B_0 = I_n$ ($\sigma = -1$).

Using a rank 2 correction, it reads:

$$
B_{k+1} = B_k + \alpha uu^\top + \beta vv^\top.
$$

Imposing the quasi-Newton relation (secant condition):

$$
B_{k+1}y_k = s_k
$$

\n
$$
\Rightarrow B_k y_k + \alpha (u^{\top} y_k)u + \beta (v^{\top} y_k)v = s_k
$$

\n
$$
\Rightarrow \alpha (u^{\top} y_k)u + \beta (v^{\top} y_k)v = s_k - B_k y_k
$$

This equation has not a unique solution. The choice for u and v by DFP is:

$$
u = s_k \quad \text{and} \quad v = B_k y_k
$$

Solving for α and β the equation:

$$
\alpha(s_k^{\top} y_k) s_k + \beta(y_k^{\top} B_k y_k) B_k y_k = s_k - B_k y_k
$$

we obtain

$$
\alpha = \frac{1}{s_k^{\top} y_k} \quad \text{and} \quad \beta = -\frac{1}{y_k^{\top} B_k y_k}
$$

Davidon, Fletcher and Powell formula

The DFP formula is a rank 2 correction. It reads:

$$
B_{k+1} = B_k + \frac{s_k s_k^\top}{s_k^\top y_k} - \frac{B_k y_k y_k^\top B_k}{y_k^\top B_k y_k}.
$$

 (1)

Theorem

Let us consider the update

$$
\begin{cases} d_k = -B_k g_k ,\\ x_{k+1} = x_k + \rho_k B_k g_k, \ \rho_k \ \text{optimal} \end{cases}
$$

where B_0 is positive definite and provided as well as x_0 . Then the matrices B_k defined as in [\(1\)](#page-27-0) are positive definite for all $k > 0$.

 \rightarrow Cf. proof in lecture notes

Require: $\varepsilon > 0$ (tolerance), K (maximum number of iterations) 1: $x_0 \in \mathbb{R}^n$, $B_0 > 0$ (for example I_n) 2: for $k = 0$ to K do 3: if $||g_k|| < \varepsilon$ then 4: break $5[°]$ end if 6: $d_k = -B_k \nabla f(x_k)$ 7: $x_{k+1} = x_k + \rho_k d_k$ (Compute optimal step size ρ_k) 8: $s_k = \rho_k d_k$ 9: $y_k = g_{k+1} - g_k$ 10: $B_{k+1} = B_k + \frac{s_k s_k^\top}{s_k^\top y_k} - \frac{B_k y_k y_k^\top B_k}{y_k^\top B_k y_k}$ $y_k^\top B_k y_k$ 11: end for 12: return x_{k+1}

Remark: In Numpy to do things like $s_k s_k^{\top}$ use the np.outer function.

This algorithm has a remarkable property when the function f is quadratic.

Theorem

When f is a quadratic form, the algorithm of Davidon-Fletcher-Powell generates a sequence of directions s_0, \ldots, s_k which verify:

$$
s_i A^{\top} s_j = 0, \quad 0 \leq i < j \leq k, B_{k+1} A s_i = s_i, \qquad 0 \leq i \leq k.
$$
 (2)

Remark: This theorem says that in the quadratic case, the algorithm is like a conjugate gradient method, which therefore converges in at most n iterations.

Remark: This required to have an optimal step size.

One can also notice that for $k = n - 1$

$$
B_nAs_i=s_i, i=0,\ldots,n-1,
$$

and since all s_i are linearly independent it implies $B_n=A^{-1}.$

Remark: One can show that in the general case (non-quadratic), if the direction d_k is reinitialized to $-g_k$ periodically, this algorithm converges to a local minimum \hat{x} of f and that:

$$
\lim_{k\to\infty}B_k=\nabla^2f(\hat{x})^{-1}.
$$

This implies that close to the optimum, the method behaves like a Newton method. This justifies the use of $\rho_k = 1$ when using approximate line search.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

- The BFGS formula is derived from the formula of DFP by swapping the roles of s_k and y_k .
- The formula obtained allows to maintain an approximation H_k of the Hessian which satisfies the same properties: $H_{k+1} > 0$ if $H_k > 0$ and satisfying the quasi-Newton relation:

$$
y_k = H_{k+1} s_k \enspace .
$$

The BEGS formula therefore reads:

$$
H_{k+1} = H_k + \frac{y_k y_k^\top}{y_k^\top s_k} - \frac{H_k s_k s_k^\top H_k}{s_k^\top H_k s_k}.
$$

.

[Newton](#page-1-0) [Variable metric](#page-11-0) [Quasi-Newton](#page-17-0) [Non-linear least-squares](#page-40-0)

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

BFGS formula:

$$
H_{k+1} = H_k + \frac{y_k y_k^\top}{y_k^\top s_k} - \frac{H_k s_k s_k^\top H_k}{s_k^\top H_k s_k}
$$

Exercise

Use Sherman-Morrison formula: $(A + uv^{\top})^{-1} = A^{-1} - \frac{A^{-1}uv^{\top}A^{-1}}{1+v^{\top}A^{-1}u}$ $1+v$ [⊤] $A^{-1}u$ to derive an update of B_{k+1} .

.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

BFGS formula:

$$
H_{k+1} = H_k + \frac{y_k y_k^\top}{y_k^\top s_k} - \frac{H_k s_k s_k^\top H_k}{s_k^\top H_k s_k}
$$

Exercise

Use Sherman-Morrison formula: $(A + uv^{\top})^{-1} = A^{-1} - \frac{A^{-1}uv^{\top}A^{-1}}{1+v^{\top}A^{-1}u}$ $1+v$ [⊤] $A^{-1}u$ to derive an update of B_{k+1} .

$$
B_{k+1} = (I_n - \mu_k s_k y_k^{\top}) B_k (I_n - \mu_k y_k s_k^{\top}) + \mu_k s_k s_k^{\top}, \mu_k = \frac{1}{y_k^{\top} s_k}
$$

Remark: DFP and BFGS have the same computational cost.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

Require: $\varepsilon > 0$ (tolerance), K (maximum number of iterations) 1: $x_0 \in \mathbb{R}^n$, $H_0 > 0$ (for example I_n) 2: for $k = 0$ to K do 3: if $||g_k|| < \varepsilon$ then 4: break $5:$ end if 6: $d_k = -H_k^{-1} \nabla f(x_k)$ 7: $x_{k+1} = x_k + \rho_k d_k$ (optimal step size ρ_k with line search) 8: $s_k = \rho_k d_k$ 9: $y_k = g_{k+1} - g_k$ 10: $H_{k+1} = H_k + \frac{y_k y_k^\top}{y_k^\top s_k} - \frac{H_k s_k s_k^\top H_k}{s_k^\top H_k s_k}$ $\mathsf{s}_k^\top \mathsf{H}_k \mathsf{s}_k$ 11: end for

12: return x_{k+1}

The BFGS algorithm has the same property as the DFP method:

- in the quadratic case it produces conjugate directions
- it converges in less than n iterations and $H_n = A$
- Usually combined with Wolfe or Goldstein's rule.

but:

- much less sensitive than DFP to the use of approximate step size (to combine with Wolfe or Goldstein's rule).
- Remark: BFGS is in scipy see scipy.optimize.fmin_bfgs.

- L-BFGS is a variant of BFGS that limits memory usage. It was originally proposed by Liu and Nocedal in 1989:
- \bullet Does not store matrix of the size of the Hessian, $n \times n$ which can be prohibitive in applications such as computer vision or machine learning where n can be millions.
- L-BFGS stores only a few vectors that are used to approximate the matrix H_k^{-1} k
- So the memory usage is linear in the dimension of the problem.

[Liu, D. C.; Nocedal, J. (1989). "On the Limited Memory Method for Large Scale Optimization". Mathematical Programming B. 45 (3): 503–528.]

- L-BFGS is an algorithm of the quasi-Newton family with $d_k = -B_k \nabla f(x_k)$.
- Difference is in the computation of the product between B_k and $\nabla f(x_k)$.
- Idea is to keep in memory the last low rank corrections, more specifically the last m values of $s_k = x_{k+1} - x_k$ and $y_k = g_{k+1} - g_k$.
- \bullet Use *m* times recursively the formula:

$$
B_{k+1} = (I_n - \mu_k s_k y_k^{\top}) B_k (I_n - \mu_k y_k s_k^{\top}) + \mu_k s_k s_k^{\top}, \mu_k = \frac{1}{y_k^{\top} s_k}
$$

but never storing in memory a matrix $n \times n$.

Let $\mu_k = \frac{1}{y_k^{\top} s_k}$, the algorithm to obtain d_k reads: **Require:** *m* (memory size) 1: $q = g_k$ 2: for $i = k - 1$ to $k - m$ do 3: $\alpha_i = \mu_i s_i^{\top} q$ 4: $q = q - \alpha_i v_i$ 5: end for 6: $z = B_k^0 q$ 7: for $i = k - m$ to $k - 1$ do 8: $\beta = \mu_i y_i^{\top} z$ 9: $z = z + s_i(\alpha_i - \beta)$ 10: end for 11: $d_k = -z$

where \mathcal{B}_k^0 is positive definite matrix, e.g., a diagonal matrix, so that initially setting z is fast.

- Like BFGS, L-BFGS does not need exact line search to converge.
- L-BFGS is for smooth unconstrained problem but can be extended to handle simple box constraints (a.k.a. bound constraints): $l_i \le x_i \le u_i$ where l_i and u_i are per-variable constant lower and upper bounds. This algorithm called L-BFGS-B is due to Byrd et al. (1995).
- L-BFGS-B in scipy as scipy.optimize.fmin l bfgs b.

[Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C. (1995). "A Limited Memory Algorithm for Bound Constrained Optimization". SIAM J. Sci. Comput. 16 (5): 1190–1208. doi:10.1137/0916069.]

 \rightarrow Can you solve a Lasso with L-BFGS-B?

Table of Contents

[Newton](#page-1-0)

The function to minimize reads:

$$
f(x) = \frac{1}{2} \sum_{i=1}^{m} f_i(x)^2
$$

.

Newton method can be applied to the minimization of f . The gradient and the Hessian matrix read in this particular case:

$$
\nabla f(x) = \sum_{i=1}^m f_i(x) \nabla f_i(x) ,
$$

and

$$
\nabla^2 f(x) = \sum_{i=1}^m \nabla f_i(x) \nabla f_i(x)^\top + \sum_{i=1}^m f_i(x) \nabla^2 f_i(x) .
$$

Gauss-Newton method

Idea is to ignore the second order terms. The Hessian reads:

$$
H(x) \approx \sum_{i=1}^m \nabla f_i(x) \nabla f_i(x)^\top.
$$

This matrix is always positive. Furthermore when m is much larger than n , this matrix is often positive definite.

The Gauss-Newton method uses this approximation of $H(x)$ in a Newton-like solver:

$$
\begin{cases}\nx_0 = \text{fixed}, \\
H_k = \sum_{i=1}^m \nabla f_i(x_k) \nabla f_i(x_k)^\top, \\
x_{k+1} = x_k - H_k^{-1} \nabla f(x_k)\n\end{cases}
$$

Gauss-Newton method

To guarantee the convergence of the Gauss-Newton method, it can be combined with a line search procedure:

$$
\begin{cases}\nx_0 = \text{fixed}, \\
H_k = \sum_{i=1}^m \nabla f_i(x_k) \nabla f_i(x_k)^\top, \\
x_{k+1} = x_k - \rho_k H_k^{-1} \nabla f(x_k)\n\end{cases}
$$

Levenberg-Marquardt method

- Levenberg-Marquardt method is a variant of Gauss-Newton that enforces that the Hessian approximation H_k is positive definite.
- The idea is simply to replace H_k by $H_k + \lambda I_n$.

$$
\begin{cases}\nx_0 = \text{fixed}, \\
H_k = \sum_{i=1}^m \nabla f_i(x_k) \nabla f_i(x_k)^\top, \\
d_k = -(H_k + \lambda I_n)^{-1} \nabla f(x_k) \\
x_{k+1} = x_k + \rho_k d_k.\n\end{cases}
$$

- If λ is large, method is equivalent to a gradient method.
- The Levenberg-Marquardt method in scipy as scipy.optimize.leastsq.

References

Wright and Nocedal, Numerical Optimization, 1999, Springer, Chapters 6 and 8.