
(Quasi-)Newton methods

Alexandre Gramfort

Master 2 Data Science, Univ. Paris Saclay
Optimisation for Data Science

Newton Variable metric Quasi-Newton Non-linear least-squares

Table of Contents

1 Newton

2 Variable metric

3 Quasi-Newton

4 Non-linear least-squares

2 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Outline

So far you have seen:

gradient descent

proximal gradient descent

accelerated gradient descent

(proximal) coordinate descent

conjugate gradient

Now

Newton methods

Quasi-Newton methods

Methods dedicated to non-linear least squares

Quasi-Newton and in particular L-BFGS are still heavily used to
tackle smooth potentially large scale optim problems in machine
learning (e.g. ℓ2 logistic regression, conditional random fields)

3 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Not seen in the course:

Prox-Newton methods for the twice differentiable +
proximable penalty case

Constrained methods (x is constrained to a subset of Rn)

Stochastic quasi-Newton methods (when f is a sum)

Remark: State-of-the-art solvers like liblinear are combining

Prox-Newton and coordinate descent methods for logistic regression.

This course is largely based on the book:

Wright and Nocedal, Numerical Optimization, 1999, Springer,
Chapters 6 and 8.

4 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Newton method

It is used to find the zeros of a differentiable non-linear function g :

Find x such that g(x) = 0, where g : Rn → Rn.

Given a starting point x0, Newton method consists in iterating:

xk+1 = xk − g ′(xk)
−1g(xk)

where g ′(x) is the derivative (Jacobian) of g at point x .

We have that:

g ′(xk) is matrix in Rn×n

each iteration requires to solve a linear system.

5 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Newton method in 1d

6 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Newton method?

Applying this method to the optimization problem:

min
x∈Rn

f (x)

consists in setting g(x) = ∇f (x), i.e., looking for stationary points
(i.e. ∇f (x) = 0).

The iterations read:

xk+1 = xk −∇2f (xk)
−1∇f (xk) .

Newton method is particularly interesting as its convergence is
quadratic locally around x∗, i.e.:

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥2, γ > 0 .

7 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Finding Newton’s algorithm

Assuming f is twice differentiable, the Taylor expansion at order 2
of f at x reads:

∀h ∈ Rn, f (x + h) = f (x) +∇f (x)⊤h +
1

2
h⊤∇2f (x)h︸ ︷︷ ︸

Qx (h)

+o(∥h∥2)

Exercise

Can you minimize Qx(h) with respect to h?

8 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Convergence of Newton method

Theorem (Convergence of Newton method)

Let g : Rn → Rn assumed twice differentiable C2, and x∗ ∈ Rn an
isolated zero of g (g(x∗) = 0). Assuming that g ′(x∗) is invertible,
there exists a closed ball B centered on x∗, such that for every
x0 ∈ B, the sequence xk obtained with Newton algorithm stays in
B and converges towards x∗. Furthermore, there is a constant
γ > 0, such that ∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥2.

→ See proof in lecture notes.
Remark: Convergence of Newton is local. The method may diverge if

the initial point is too far from x∗

Remark: That is why Newton should be coupled with a line search
strategy:

xk+1 = xk − ρk∇2f (xk)
−1∇f (xk)

where ρk > 0 is a stepsize found by line search (Wolfe conditions).

9 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Newton on quadratic function

Exercise

Show that for a quadratic function

f (x) =
1

2
x⊤Ax − b⊤x + c , x ∈ Rn

with A symmetric positive definite, Newton method converges in
one iteration independently of the choice of x0.

Remark: Newton is therefore not affected by the conditioning of the

problem (not like Gradient descent).

→ See notebook.

10 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Newton on a non-convex problem

Newton’s method finds the stationnary points (∇f = 0).

It is attracted to saddle points.

Newton’s direction may not be a descent direction:

∇f (xk)
⊤ [

(∇2f (xk))
−1∇f (xk)

]
< 0

To guarantee one has a descent direction one needs to
regularize the Hessian and in practice one needs to use a line
search:

xk+1 = xk − ρk(∇2f (xk) + λ In)
−1∇f (xk)

where λ > 0 is the regularization parameter and ρk is a
stepsize found by line search.

Remark: line search is mandatory also for convex problems.

11 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Table of Contents

1 Newton

2 Variable metric

3 Quasi-Newton

4 Non-linear least-squares

12 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Variable metric

The idea behind variable metric methods consists in using
iterations of the form {

dk = −Bkgk ,

xk+1 = xk + ρkdk ,

where gk = ∇f (xk), Bk is a positive definite matrix and ρk ≥ 0 is
a step size.

Remark: If Bk is a positive definite matrix −Bkgk is a descent direction.

→ If Bk = In, it corresponds to gradient descent.
→ Setting Bk = B is the fixed metric case.

13 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Fixed metric case
When minimizing

min
x∈Rn

f (x)

one can set x = Cy with C invertible (change of variable).
Let us denote f̃ (y) = f (Cy). This leads to:

∇f̃ (y) = C⊤∇f (Cy) .

Gradient descent applied to f̃ (y) reads:

yk+1 = yk − ρkC
⊤∇f (Cyk)

which means using B = CC⊤ as it is equivalent to:

xk+1 = xk − ρkCC
⊤∇f (xk) .

Question: How would you choose C for quadratic problem?

14 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Quadratic case

Theorem (Preconditioned gradient descent)

Let f (x) a positive definite quadratic form with Hessian A, and B a
positive definite matrix. The preconditioned gradient algorithm:{

x0 = fixed,

xk+1 = xk − ρkBgk , ρk optimal

has a linear convergence: ∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥
where:

γ =
χ(BA)− 1

χ(BA) + 1
< 1 .

χ(M) = λ1/λn is the Euclidian conditioning i.e., ratio of largest
and lowest eigenvalues (≥ 1).

15 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Quadratic case

So we have a linear convergence:

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥

where:

γ =
χ(BA)− 1

χ(BA) + 1
< 1 .

Remark

The lower the conditioning of BA, the faster is the algorithm. One
cannot set B = A−1 as it would imply having already solved the
problem, but this however suggests to use B so that it
approximates A−1. This is the idea behind quasi-Newton methods.

16 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Drawbacks of Newton’s method

Quadratic convergence is an interesting property, but most of
the time, Newton’s method is too costly!

Computing the Hessian is n times more costly in time and
memory than the gradient

If the problem is non-convex, regularization is hard and costly

Then, one needs to compute H−1∇f (x) → O(n3)

What if n = 103?

Idea of quasi-Newton methods:

mimic Newton’s direction without the computational load.

17 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Table of Contents

1 Newton

2 Variable metric

3 Quasi-Newton

4 Non-linear least-squares

18 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Quasi-Newton

A quasi-Newton method reads{
dk = −Bkgk ,

xk+1 = xk + ρkdk ,

or {
dk = −H−1

k gk ,

xk+1 = xk + ρkdk ,

where Bk (resp. Hk) is a matrix which aims to approximate the
inverse of the Hessian (resp. the Hessian) of f at xk .

Question: How to achieve this?

19 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Quasi-Newton

One can start with B0 = In. how to update Bk at every iteration?

Idea: apply a Taylor expansion on the gradient, notice that at
point xk , the gradient and the Hessian are such that:

gk+1 = gk +∇2f (xk)(xk+1 − xk) + ϵ(xk+1 − xk) .

Towards convergence one should have:

gk+1 − gk ≈ ∇2f (xk)(xk+1 − xk) .

20 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Quasi-Newton relation (or secant condition)

Definition (Quasi-Newton relation)

Two matrices Bk+1 and Hk+1 verify the quasi-Newton relation (or
secant condition) if:

Hk+1(xk+1 − xk) = ∇f (xk+1)−∇f (xk)

or
xk+1 − xk = Bk+1(∇f (xk+1)−∇f (xk))

Problem: How to update Bk keeping it positive definite?

21 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Update formula of Hessian

The update strategy at iteration{
dk = −Bkgk ,

xk+1 = xk + ρkdk ,

is to correct Bk with a symmetric matrix ∆k :

Bk+1 = Bk +∆k

such that the quasi-Newton relation (secant condition) holds:

xk+1 − xk = Bk+1(gk+1 − gk)

with Bk+1 positive definite, assuming Bk is positive definite.

Idea: Use rank 1 or 2 matrices for ∆k

22 / 45 Alexandre Gramfort (Quasi-)Newton methods

Broyden formula (known as SR1)
Let’s consider a rank 1 correction on the Hessian:

Hk+1 = Hk + σvv⊤ , σ = ±1, v ∈ Rn

The matrix Hk+1 should verify the secant condition: yk = Hk+1sk ,
where yk = gk+1 − gk and sk = xk+1 − xk . It follows that:

yk = Hksk + (σv⊤sk)v ⇒ ∃δ ∈ R, v = δ(yk − Hksk)

Using the equality it leads to:

yk − Hksk = σδ2[s⊤k (yk − Hksk)](yk − Hksk)

this imposes that:

σ = sign[s⊤k (yk − Hksk)] δ = ±|s⊤k (yk − Hksk)|−1/2

This leads to:

Hk+1 = Hk +
(yk − Hksk)(yk − Hksk)

⊤

(yk − Hksk)⊤sk

Broyden formula (known as SR1)

Starting from:

Hk+1 = Hk +
(yk − Hksk)(yk − Hksk)

⊤

(yk − Hksk)⊤sk

and using the matrix inversion lemma
(Woordbury-Sherman-Morrison) leads to:

Bk+1 = Bk +
(sk − Bkyk)(sk − Bkyk)

⊤

(sk − Bkyk)⊤yk
,

also known as Broyden or SR1 formula.

Broyden formula

Theorem

Let f a quadratic form positive definite. Let us consider the
method that, starting for x0, iterates:

xk+1 = xk + sk ,

where the vectors sk are linearly independent. Then the sequence
of matrices starting by B0 and defined as:

Bk+1 = Bk +
(sk − Bkyk)(sk − Bkyk)

⊤

(sk − Bkyk)⊤yk
,

where yk = ∇f (xk+1)−∇f (xk), converges in less than n iterations
towards A−1, the inverse of the Hessian of f.

→ Cf. proof in lecture notes
Remark: No guarantee that the matrices Bk are positive definite, even if

the function f is quadratic and B0 = In (σ = −1).

Davidon, Fletcher and Powell formula

Using a rank 2 correction, it reads:

Bk+1 = Bk + αuu⊤ + βvv⊤ .

Imposing the quasi-Newton relation (secant condition):

Bk+1yk = sk

⇒ Bkyk + α(u⊤yk)u + β(v⊤yk)v = sk

⇒ α(u⊤yk)u + β(v⊤yk)v = sk − Bkyk

This equation has not a unique solution. The choice for u and v
by DFP is:

u = sk and v = Bkyk

Davidon, Fletcher and Powell formula

Solving for α and β the equation:

α(s⊤k yk)sk + β(y⊤k Bkyk)Bkyk = sk − Bkyk

we obtain

α =
1

s⊤k yk
and β = − 1

y⊤k Bkyk

Davidon, Fletcher and Powell formula

The DFP formula is a rank 2 correction. It reads:

Bk+1 = Bk +
sks

⊤
k

s⊤k yk
−

Bkyky
⊤
k Bk

y⊤k Bkyk
. (1)

Theorem

Let us consider the update{
dk = −Bkgk ,

xk+1 = xk + ρkBkgk , ρk optimal

where B0 is positive definite and provided as well as x0. Then the
matrices Bk defined as in (1) are positive definite for all k > 0.

→ Cf. proof in lecture notes

Davidon-Fletcher-Powell algorithm

Require: ε > 0 (tolerance), K (maximum number of iterations)
1: x0 ∈ Rn, B0 > 0 (for example In)
2: for k = 0 to K do
3: if ∥gk∥ < ε then
4: break
5: end if
6: dk = −Bk∇f (xk)
7: xk+1 = xk + ρkdk (Compute optimal step size ρk)
8: sk = ρkdk
9: yk = gk+1 − gk

10: Bk+1 = Bk +
sk s

⊤
k

s⊤k yk
− Bkyky

⊤
k Bk

y⊤
k Bkyk

11: end for
12: return xk+1

Remark: In Numpy to do things like sks
⊤
k use the np.outer function.

Davidon-Fletcher-Powell algorithm

This algorithm has a remarkable property when the function f is
quadratic.

Theorem

When f is a quadratic form, the algorithm of
Davidon-Fletcher-Powell generates a sequence of directions
s0, . . . , sk which verify:

siA
⊤sj = 0, 0 ≤ i < j ≤ k ,

Bk+1Asi = si , 0 ≤ i ≤ k .
(2)

Remark: This theorem says that in the quadratic case, the algorithm is

like a conjugate gradient method, which therefore converges in at most n

iterations.

Remark: This required to have an optimal step size.

Davidon-Fletcher-Powell algorithm

One can also notice that for k = n − 1

BnAsi = si , i = 0, . . . , n − 1,

and since all si are linearly independent it implies Bn = A−1.

Remark: One can show that in the general case (non-quadratic), if the
direction dk is reinitialized to −gk periodically, this algorithm converges
to a local minimum x̂ of f and that:

lim
k→∞

Bk = ∇2f (x̂)−1 .

This implies that close to the optimum, the method behaves like a

Newton method. This justifies the use of ρk = 1 when using approximate

line search.

Newton Variable metric Quasi-Newton Non-linear least-squares

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

The BFGS formula is derived from the formula of DFP by
swapping the roles of sk and yk .

The formula obtained allows to maintain an approximation Hk

of the Hessian which satisfies the same properties: Hk+1 > 0
if Hk > 0 and satisfying the quasi-Newton relation:

yk = Hk+1sk .

The BFGS formula therefore reads:

Hk+1 = Hk +
yky

⊤
k

y⊤k sk
−

Hksks
⊤
k Hk

s⊤k Hksk
.

32 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

BFGS formula:

Hk+1 = Hk +
yky

⊤
k

y⊤k sk
−

Hksks
⊤
k Hk

s⊤k Hksk
.

Exercise

Use Sherman-Morrison formula: (A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1+v⊤A−1u
to derive an update of Bk+1.

Bk+1 = (In −µksky
⊤
k)Bk(In −µkyks

⊤
k) + µksks

⊤
k , µk =

1

y⊤k sk

Remark: DFP and BFGS have the same computational cost.

33 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

BFGS formula:

Hk+1 = Hk +
yky

⊤
k

y⊤k sk
−

Hksks
⊤
k Hk

s⊤k Hksk
.

Exercise

Use Sherman-Morrison formula: (A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1+v⊤A−1u
to derive an update of Bk+1.

Bk+1 = (In −µksky
⊤
k)Bk(In −µkyks

⊤
k) + µksks

⊤
k , µk =

1

y⊤k sk

Remark: DFP and BFGS have the same computational cost.

33 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

Require: ε > 0 (tolerance), K (maximum number of iterations)
1: x0 ∈ Rn, H0 > 0 (for example In)
2: for k = 0 to K do
3: if ∥gk∥ < ε then
4: break
5: end if
6: dk = −H−1

k ∇f (xk)
7: xk+1 = xk + ρkdk (optimal step size ρk with line search)
8: sk = ρkdk
9: yk = gk+1 − gk

10: Hk+1 = Hk +
yky

⊤
k

y⊤
k sk

− Hk sk s
⊤
k Hk

s⊤k Hk sk
11: end for
12: return xk+1

34 / 45 Alexandre Gramfort (Quasi-)Newton methods

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

The BFGS algorithm has the same property as the DFP method:

in the quadratic case it produces conjugate directions

it converges in less than n iterations and Hn = A

Usually combined with Wolfe or Goldstein’s rule.

but:

much less sensitive than DFP to the use of approximate step
size (to combine with Wolfe or Goldstein’s rule).

Remark: BFGS is in scipy see scipy.optimize.fmin bfgs.

Newton Variable metric Quasi-Newton Non-linear least-squares

Limited-memory BFGS (L-BFGS) algorithm

L-BFGS is a variant of BFGS that limits memory usage. It
was originally proposed by Liu and Nocedal in 1989:

Does not store matrix of the size of the Hessian, n × n which
can be prohibitive in applications such as computer vision or
machine learning where n can be millions.

L-BFGS stores only a few vectors that are used to
approximate the matrix H−1

k

So the memory usage is linear in the dimension of the problem.

[Liu, D. C.; Nocedal, J. (1989). ”On the Limited Memory Method for

Large Scale Optimization”. Mathematical Programming B. 45 (3):

503–528.]

36 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Limited-memory BFGS (L-BFGS) algorithm

L-BFGS is an algorithm of the quasi-Newton family with
dk = −Bk∇f (xk).

Difference is in the computation of the product between Bk

and ∇f (xk).

Idea is to keep in memory the last low rank corrections, more
specifically the last m values of sk = xk+1 − xk and
yk = gk+1 − gk .

Use m times recursively the formula:

Bk+1 = (In −µksky
⊤
k)Bk(In −µkyks

⊤
k) + µksks

⊤
k , µk =

1

y⊤k sk

but never storing in memory a matrix n × n.

37 / 45 Alexandre Gramfort (Quasi-)Newton methods

Limited-memory BFGS (L-BFGS) algorithm

Let µk = 1
y⊤
k sk

, the algorithm to obtain dk reads:

Require: m (memory size)
1: q = gk
2: for i = k − 1 to k −m do
3: αi = µi s

⊤
i q

4: q = q − αiyi
5: end for
6: z = B0

kq
7: for i = k −m to k − 1 do
8: β = µiy

⊤
i z

9: z = z + si (αi − β)
10: end for
11: dk = −z

where B0
k is positive definite matrix, e.g., a diagonal matrix, so

that initially setting z is fast.

Newton Variable metric Quasi-Newton Non-linear least-squares

Limited-memory BFGS (L-BFGS) algorithm

Like BFGS, L-BFGS does not need exact line search to
converge.

L-BFGS is for smooth unconstrained problem but can be
extended to handle simple box constraints (a.k.a. bound
constraints): li ≤ xi ≤ ui where li and ui are per-variable
constant lower and upper bounds. This algorithm called
L-BFGS-B is due to Byrd et al. (1995).

L-BFGS-B in scipy as scipy.optimize.fmin l bfgs b.

[Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C. (1995). ”A Limited Memory

Algorithm for Bound Constrained Optimization”. SIAM J. Sci. Comput.

16 (5): 1190–1208. doi:10.1137/0916069.]

→ Can you solve a Lasso with L-BFGS-B?

39 / 45 Alexandre Gramfort (Quasi-)Newton methods

Newton Variable metric Quasi-Newton Non-linear least-squares

Table of Contents

1 Newton

2 Variable metric

3 Quasi-Newton

4 Non-linear least-squares

40 / 45 Alexandre Gramfort (Quasi-)Newton methods

non-linear least-squares

The function to minimize reads:

f (x) =
1

2

m∑
i=1

fi (x)
2 .

Newton method can be applied to the minimization of f . The
gradient and the Hessian matrix read in this particular case:

∇f (x) =
m∑
i=1

fi (x)∇fi (x) ,

and

∇2f (x) =
m∑
i=1

∇fi (x)∇fi (x)
⊤ +

m∑
i=1

fi (x)∇2fi (x) .

Gauss-Newton method

Idea is to ignore the second order terms. The Hessian reads:

H(x) ≈
m∑
i=1

∇fi (x)∇fi (x)
⊤ .

This matrix is always positive. Furthermore when m is much larger
than n, this matrix is often positive definite.

The Gauss-Newton method uses this approximation of H(x) in a
Newton-like solver:

x0 = fixed,

Hk =
m∑
i=1

∇fi (xk)∇fi (xk)
⊤,

xk+1 = xk − H−1
k ∇f (xk) .

Newton Variable metric Quasi-Newton Non-linear least-squares

Gauss-Newton method

To guarantee the convergence of the Gauss-Newton method, it can
be combined with a line search procedure:

x0 = fixed,

Hk =
m∑
i=1

∇fi (xk)∇fi (xk)
⊤,

xk+1 = xk − ρkH
−1
k ∇f (xk) .

43 / 45 Alexandre Gramfort (Quasi-)Newton methods

Levenberg-Marquardt method

Levenberg-Marquardt method is a variant of Gauss-Newton
that enforces that the Hessian approximation Hk is positive
definite.

The idea is simply to replace Hk by Hk + λIn.

x0 = fixed,

Hk =
m∑
i=1

∇fi (xk)∇fi (xk)
⊤,

dk = −(Hk + λIn)
−1∇f (xk)

xk+1 = xk + ρkdk .

If λ is large, method is equivalent to a gradient method.

The Levenberg-Marquardt method in scipy as
scipy.optimize.leastsq.

Newton Variable metric Quasi-Newton Non-linear least-squares

References

Wright and Nocedal, Numerical Optimization, 1999, Springer,
Chapters 6 and 8.

45 / 45 Alexandre Gramfort (Quasi-)Newton methods

	Newton
	Variable metric
	Quasi-Newton
	Non-linear least-squares

