
M2 - Optimisation for Data Science A. Gramfort

(Quasi-)Newton methods

Contents
1 Introduction 1

1.1 Newton method . 1
1.2 Variable metric methods . 2

2 Quasi-Newton methods 3
2.1 Quasi-Newton relation . 3
2.2 Update formula of Hessian . 3
2.3 Broyden formula . 4
2.4 Davidon, Fletcher and Powell formula . 5
2.5 Davidon-Fletcher-Powell algorithm . 6
2.6 Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm . 6
2.7 Limited-memory BFGS (L-BFGS) algorithm . 7

3 Methods specific to least squares 8
3.1 Gauss-Newton method . 8
3.2 Levenberg-Marquardt method . 8

1 Introduction
This course is largely based on the chapters 6 and 8 in [1].

1.1 Newton method
Newton method is a method to find the zeros of a differentiable non-linear function g, x such that
g(x) = 0, where g : Rn → Rn. Given a starting point x0, Newton method consists in iterating:

xk+1 = xk − g′(xk)−1g(xk)

where g′(x) is the derivative of g at point x. Here g′(xk)−1 is matrix in Rn×n. So each iteration requires
to solve a linear system.

Applying this method to the optimization problem:

min
x∈Rn

f(x)

consists in setting g(x) = ∇f(x), i.e. looking for stationary points. The iterations read:

xk+1 = xk −∇2f(xk)−1∇f(xk) .

Newton method is particularly interesting as its convergence is quadratic locally around x∗, i.e.:

‖xk+1 − x∗‖ ≤ γ‖xk − x∗‖2, γ > 0 .

Theorem 1 (Convergence of Newton method). Let g : Rn → Rn assumed twice differentiable C2, and
x∗ ∈ Rn an isolated zero of g (g(x∗) = 0). Let us assume that g′(x∗) is invertible. Then there exists
a closed ball B centered on x∗, such that for every x0 ∈ B, the sequence xk obtained with Newton
algorithm stays in B and converges towards x∗. Furthermore, there is a constant γ > 0, such that
‖xk+1 − x∗‖ ≤ γ‖xk − x∗‖2.

page 1

M2 - Optimisation for Data Science A. Gramfort

proof. g′ is continuous and g′(x∗) is invertible so there exists a ball B(x∗, r0) in which g′ stays invertible
and (g′)−1 is uniformly bounded by a constant m > 0. Using a Taylor expansion with integral form of
the remainder one has:

−g(xk) = g(x∗)− g(xk) = g′(xk)(x∗ − xk) +

∫ 1

0

g′′(x∗ + t(xk − x∗)) · (x∗ − xk)2tdt .

At each iteration one iterates xk+1 = xk − g′(xk)−1g(xk). This implies

xk+1 − x∗ = g′(xk)−1
(∫ 1

0

g′′(x∗ + t(xk − x∗)) · (x∗ − xk)2tdt

)
.

As g′′ is also uniformly bounded by M , one obtains

‖xk+1 − x∗‖ ≤
mM

2
‖x∗ − xk‖2 .

Let r = min(r0,
2

mM). It is easy to show that for x0 in B(x∗, r) the sequence remains in the ball. Let

ek =
mM

2
‖x∗ − xk‖ .

One has that ek+1 ≤ e2k, so if e0 is less than 1, the sequence converges towards x∗.
As it is made clear by the proof, the convergence is guaranteed only if x0 is sufficiently close to x∗.

The method may diverge if the initial point is too far from x∗ or if the Hessian is not positive definite.
In order to address this issue of local convergence, Newton method can be combined with a line search
method in the direction dk = −∇2f(xk)−1∇f(xk) .

Exercise 1. Show that for a quadratic function

f(x) =
1

2
x>Ax− b>x+ c, x ∈ Rn

with A symmetric positive definite, Newton method converges in one iteration independently of the choice
of x0.

1.2 Variable metric methods
The idea behind variable metric methods consists in using iterations of the form{

dk = −Bkgk ,

xk+1 = xk + ρkdk ,

where gk = ∇f(xk) and Bk is a positive definite matrix. If Bk = In, it corresponds to gradient descent.
Fixing Bk = B leads to the following remark.

Remark. When minimizing
min
x∈Rn

f(x)

one can set x = Cy with C invertible (change of variable). Let us denote f̃(y) = f(Cy). This leads to:

∇f̃(y) = C>∇f(Cy) .

Gradient descent applied to f̃(y) reads:

yk+1 = yk − ρkC>∇f(Cyk)

which is equivalent to
xk+1 = xk − ρkCC>∇f(xk) .

This amounts to using B = CC>. In the case where f is a quadratic form, it is straightforward to observe
that this will improve convergence.

page 2

M2 - Optimisation for Data Science A. Gramfort

Theorem 2. Let f(x) a positive definite quadratic form and B a positive definite matrix. The precondi-
tioned gradient algorithm: {

x0 = fixed,
xk+1 = xk − ρkBgk, ρk optimal

has a linear convergence:
‖xk+1 − x∗‖ ≤ γ‖xk − x∗‖

where:
γ =

χ(BA)− 1

χ(BA) + 1
< 1 .

Here χ(M) = λ1/λn, i.e., it is the ratio between largest and lowest eigenvalues. It is the conditioning
for the Euclidian norm.
Remark. The lower the conditioning of BA, the faster is the algorithm. One cannot set B = A−1 as it
would imply having already solved the problem, but this however suggests to use B so that it approximates
A−1. This is the idea behind quasi-Newton methods.

2 Quasi-Newton methods

2.1 Quasi-Newton relation
A quasi-Newton method reads {

dk = −Bkgk ,

xk+1 = xk + ρkdk ,

or {
dk = −H−1k gk ,

xk+1 = xk + ρkdk ,

where Bk (resp. Hk) is a matrix which aims to approximate the inverse of the Hessian (resp. the Hessian)
of f at xk. The question is how to achieve this? One can start with B0 = In, but then how to update Bk

at every iteration? The idea is the following: by applying a Taylor expansion on the gradient, we know
that at point xk, the gradient and the Hessian are such that:

gk+1 = gk +∇2f(xk)(xk+1 − xk) + ε(xk+1 − xk) .

If one assumes that the approximation is good enough one has:

gk+1 − gk ≈ ∇2f(xk)(xk+1 − xk) ,

which leads to the quasi-Newton relation, a.k.a. the secant condition.

Definition 1. Two matrices Bk+1 and Hk+1 verify the quasi-Newton relation if:

Hk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk)

or
xk+1 − xk = Bk+1(∇f(xk+1)−∇f(xk))

The follow up question is how to update Bk while making sure that it stays positive definite.

2.2 Update formula of Hessian
The update strategy at iteration {

dk = −Bkgk ,

xk+1 = xk + ρkdk ,

is to correct Bk with a symmetric matrix ∆k:

Bk+1 = Bk + ∆k

page 3

M2 - Optimisation for Data Science A. Gramfort

such that quasi-Newton relation holds:

xk+1 − xk = Bk+1(gk+1 − gk)

with Bk+1 positive definite, assuming Bk is positive definite. For simplicity we will write Bk+1 > 0. We
will now see different formulas to define ∆k, under some assumptions that its rank is 1 or 2. We will
speak about rank 1 or rank 2 corrections.

2.3 Broyden formula
Broyden formula is a rank 1 correction. Let us write

Hk+1 = Hk + σvv> , σ = ±1, v ∈ Rn

The matrix Hk+1 should verify the secant condition: yk = Hk+1sk , where yk = gk+1 − gk and sk =
xk+1 − xk. It follows that:

yk = Hksk + (σv>sk)v ⇒ ∃δ ∈ R, v = δ(yk −Hksk)

Using the equality it leads to:

yk −Hksk = σδ2[s>k (yk −Hksk)](yk −Hksk)

this imposes that:
σ = sign[s>k (yk −Hksk)] δ = ±|s>k (yk −Hksk)|−1/2

This leads to:

Hk+1 = Hk +
(yk −Hksk)(yk −Hksk)>

(yk −Hksk)>sk

Using the matrix inversion lemma (Woordbury-Sherman-Morrison) it leads to:

Bk+1 = Bk +
(sk −Bkyk)(sk −Bkyk)>

(sk −Bkyk)>yk
,

also known as Broyden or SR1 formula.

Theorem 3. Let f a quadratic form positive definite. Let us consider the method that, starting for x0,
iterates:

xk+1 = xk + sk ,

where the vectors sk are linearly independent. Then the sequence of matrices starting by B0 and defined
as:

Bk+1 = Bk +
(sk −Bkyk)(sk −Bkyk)>

(sk −Bkyk)>yk
,

where yk = ∇f(xk+1) − ∇f(xk), converges in less than n iterations towards A−1, the inverse of the
Hessian of f.

proof. Since we consider here a quadratic function, the Hessian is constant and equal to A. This leads
to:

yi = ∇f(xi+1)−∇f(xi) = A(xi+1 − xi) = Asi,∀i.

We have seen that Bk+1 is constructed such that:

Bk+1yk = sk .

Let us show that:
Bk+1yi = si , i = 0, . . . , k − 1 .

By recurrence, let us assume that it is true for Bk:

Bkyi = si , i = 0, . . . , k − 2 .

page 4

M2 - Optimisation for Data Science A. Gramfort

Let i ≤ k − 2. One has

Bk+1yi = Bkyi +
(sk −Bkyk)(s>k yi − (Bkyk)>yi)

(sk −Bkyk)>yk
. (1)

By hypothesis, one has Bkyi = si which implies that y>k Bkyi = y>k si, but since Asj = yj for all j, it leads
to:

y>k si = s>k Asi = s>k yi ,

The numerator in (1) is therefore 0, which leads to: Bk+1yi = Bkyi = si. One therefore has:

Bk+1yi = si,∀i = 0, . . . , k .

After n iterations, one has
Bnyi = si,∀i = 0, . . . , n− 1 .

but since yi = Asi, this last equation is equivalent to:

BnAsi = si,∀i = 0, . . . , n− 1 .

As the si form a basis of Rn this implies that BnA = In or Bn = A−1. �
The issue with Broyden’s formula is that there is no guarantee that the matrices Bk are positive

definite, even if the function f is quadratic and B0 = In (σ can be −1). It is nevertheless interesting to
have Bn = A−1.

2.4 Davidon, Fletcher and Powell formula
The formula from Davidon, Fletcher and Powell is a rank 2 correction. It reads:

Bk+1 = Bk +
sks
>
k

s>k yk
− Bkyky

>
k Bk

y>k Bkyk
. (2)

The following theorem states that under certain conditions, the formula guarantees to have Bk positive
definite.

Theorem 4. Let us consider the update{
dk = −Bkgk ,

xk+1 = xk + ρkBkgk, ρk optimal

where B0 > 0 is provided as well as x0. Then the matrices Bk defined as in (2) are positive definite for
all k > 0.

proof. Let x ∈ Rn \ {0}. One has:

x>Bk+1x = x>Bkx+
(s>k x)2

s>k yk
− (y>k Bkx)2

y>k Bkyk

=
y>k Bkykx

>Bkx− (y>k Bkx)2

y>k Bkyk
+

(s>k x)2

s>k yk

(3)

If one defines the dot product 〈x, y〉 as x>Bky the equation above reads:

x>Bk+1x =
〈yk, yk〉〈x, x〉 − 〈yk, x〉2

〈yk, yk〉
+

(s>k x)2

s>k yk
.

The first term is positive by Cauchy-Schwartz inequality. Regarding the second term, as the step size
is optimal one has:

g>k+1dk = 0,

which implies
s>k yk = −ρk(gk+1 − gk)>dk = ρkg

>
k Bkgk > 0,

and so x>Bk+1x ≥ 0. Both terms being positive, the sum is zero only if both terms are 0. This implies
that x = λyk with λ 6= 0. In this case the second term cannot be zero as s>k x = λs>k yk. This implies that
Bk+1 > 0. �

page 5

M2 - Optimisation for Data Science A. Gramfort

Remark. In the proof we used the fact that an optimal step size is used. The result still holds if one uses
an approximate line search strategy for example using Wolfe and Powell’s rule. In this case the point
xk+1 is such that:

φ′(ρk) = d>k+1dk ≥ m2‖dk‖2, 0 < m2 < 1,

which guarantees:
g>k+1

xk+1 − xk
ρk

> g>k
xk+1 − xk

ρk
,

and therefore (gk+1 − gk)>(xk+1 − xk) > 0.

2.5 Davidon-Fletcher-Powell algorithm
One can now use the later formula in algorithm 1.

Algorithm 1: Davidon-Fletcher-Powell algorithm
Require: ε > 0 (tolerance), K (maximum number of iterations)
1: x0 ∈ Rn, B0 > 0 (for example In)
2: for k = 0 to K do
3: if ‖gk‖ < ε then
4: break
5: end if
6: dk = −Bk∇f(xk)
7: Compute optimal step size ρk
8: xk+1 = xk + ρkdk
9: sk = ρkdk

10: yk = gk+1 − gk
11: Bk+1 = Bk +

sks
>
k

s>k yk
− Bkyky

>
k Bk

y>
k Bkyk

12: end for
13: return xk+1

This algorithm has a remarkable property when the function f is quadratic.

Theorem 5. When f is a quadratic form, the algorithm 1 generates a sequence of directions s0, . . . , sk
which verify:

siA
>sj = 0, 0 ≤ i < j ≤ k,

Bk+1Asi = si, 0 ≤ i ≤ k.
(4)

This theorem says that in the quadratic case, the algorithm 1 is like a conjugate gradient method,
which therefore converges in at most n iterations. One can also notice that for k = n− 1 the equalities

BnAsi = si, i = 0, . . . , n− 1,

and the fact that all si are linearly independent implies that Bn = A−1.

Remark. One can show that in the general case (non-quadratic), if the direction dk is reinitialized to −gk
periodically, this algorithm converges to a local minimum x̂ of f and that:

lim
k→∞

Bk = ∇2f(x̂)−1 .

This implies that close to the optimum, if the line search is exact, the method behaves like a Newton
method. This justifies the use of ρk = 1 when using approximate line search.

2.6 Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
The BFGS formula is a correction formula of rank 2 which is derived from the formula of DFP by swapping
the roles of sk and yk. BFGS is named for the four people who independently discovered it in 1970:
Broyden, Fletcher, Goldfarb and Shanno. The formula obtained allows to maintain an approximation Hk

page 6

M2 - Optimisation for Data Science A. Gramfort

of the Hessian which satisfies the same properties: Hk+1 > 0 if Hk > 0 and satisfying the quasi-Newton
relation:

yk = Hk+1sk.

The formula therefore reads:

Hk+1 = Hk +
yky
>
k

y>k sk
− Hksks

>
k Hk

s>k Hksk
.

The algorithm is detailed in algorithm 2.

Algorithm 2: Broyden-Davidon-Goldfarb-Shanno (BFGS) algorithm
Require: ε > 0 (tolerance), K (maximum number of iterations)
1: x0 ∈ Rn, H0 > 0 (for example In)
2: for k = 0 to K do
3: if ‖gk‖ < ε then
4: break
5: end if
6: dk = −H−1k ∇f(xk)
7: Compute optimal step size ρk
8: xk+1 = xk + ρkdk
9: sk = ρkdk

10: yk = gk+1 − gk
11: Hk+1 = Hk +

yky
>
k

y>
k sk
− Hksks

>
k Hk

s>k Hksk

12: end for
13: return xk+1

Note that the direction dk is obtained by solving a linear system. However in practice the update of
Hk is done on Cholesky factorization of Hk = CkC

>
k which implies that the complexity of BFGS is the

same as DFP. The use of a Cholesky factorization is useful to check that Hk stays numerically positive
definite, as this property can be lost due to numerical errors.

Remark. The BFGS algorithm has the same property as the DFP method: in the quadratic case it
produces conjugate directions, converges in less than n iterations and Hn = A. Compared to DFP, BFGS
convergence speed is much less sensitive to the use of approximate step size. It is therefore a particularly
good candidate when combined with Wolfe and Powell’s or Goldstein’s rule.

Remark. The BFGS method is available in scipy as scipy.optimize.fmin_bfgs.

2.7 Limited-memory BFGS (L-BFGS) algorithm
The limited-memory BFGS (L-BFGS) algorithm is a variant of the BFGS algorithm that limits memory
usage. While BFGS requires to store in memory a matrix of the size of the Hessian, n × n, which can
be prohibitive in applications such as computer vision or machine learning, the L-BFGS algorithm only
stores a few vectors that are used to approximate the matrix H−1k . As a consequence the memory usage
is linear in the dimension of the problem.

The L-BFGS is an algorithm of the quasi-Newton family with dk = −Bk∇f(xk). The difference is
in the computation of the product between Bk and ∇f(xk). The idea is to keep in memory the last few
low rank corrections, more specifically the last m updates sk = xk+1 − xk and yk = gk+1 − gk. Often
in practice m < 10, yet it might be necessary to modify this parameter on specific problems to speed
up convergence. We denote by µk = 1

y>
k sk

. The algorithm to compute the descent direction is given in
algorithm 3.

Commonly, the inverse Hessian B0
k is represented as a diagonal matrix, so that initially setting z

requires only an element-by-element multiplication. B0
k can change at each iteration but has however to

be positive definite.
Like BFGS, L-BFGS does not need exact line search to converge. In machine learning, it is almost

always the best approach to solve `2 regularized Logistic regression and conditional random fields (CRF).

page 7

M2 - Optimisation for Data Science A. Gramfort

Algorithm 3: Direction finding in L-BFGS algorithm
Require: m (memory size)
1: q = gk
2: for i = k − 1 to k −m do
3: αi = µis

>
i q

4: q = q − αiyi
5: end for
6: z = B0

kq
7: for i = k −m to k − 1 do
8: β = µiy

>
i z

9: z = z + si(αi − β)
10: end for
11: dk = −z

Remark. L-BFGS is for smooth unconstrained problem. Yet, it can be extended to handle simple box
constraints (a.k.a. bound constraints) on variables; that is, constraints of the form li ≤ xi ≤ ui where li
and ui are per-variable constant lower and upper bounds, respectively (for each xi, either or both bounds
may be omitted). This algorithm is called L−BFGS −B.
Remark. The L-BFGS-B algorithm is available in scipy as scipy.optimize.fmin_l_bfgs_b.

3 Methods specific to least squares

3.1 Gauss-Newton method
When considering least square problems the function to minimize reads:

f(x) =
1

2

m∑
i=1

fi(x)2 .

Newton method can be applied to the minimization of f . The gradient and the Hessian matrix read in
this particular case:

∇f(x) =

m∑
i=1

fi(x)∇fi(x) ,

and

∇2f(x) =

m∑
i=1

∇fi(x)∇fi(x)> +

m∑
i=1

fi(x)∇2fi(x) .

If we are close to the optimum, where the fi(x) are assumed to be small the second term can be ignored.
The matrix obtained reads:

H(x) =

m∑
i=1

∇fi(x)∇fi(x)> .

This matrix is always positive. Furthermore when m is much larger than n, this matrix is often positive
definite. The Gauss-Newton method consists in using H(x) in place of the Hessian. The method reads:

x0 = fixed,

Hk =

m∑
i=1

∇fi(xk)∇fi(xk)>,

xk+1 = xk −H−1k ∇f(xk) .

3.2 Levenberg-Marquardt method
In order to guarantee the convergence of the Gauss-Newton method, it can be combined with a line search
procedure:

xk+1 = xk − ρkH−1k ∇f(xk) .

page 8

M2 - Optimisation for Data Science A. Gramfort

However in order to guarantee that the Hk stay positive definite a modified method, known as Levenberg-
Marquardt, is often used. The idea is simply to replace Hk by Hk + λIn. One can notice that if λ is
large, this method is equivalent to a simple gradient method. The Levenberg-Marquardt method reads:

x0 = fixed,

Hk =

m∑
i=1

∇fi(xk)∇fi(xk)>,

dk = −(Hk + λIn)−1∇f(xk)

xk+1 = xk + ρkdk .

Remark. The Levenberg-Marquardt method is available in scipy as scipy.optimize.leastsq.

References
[1] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations Research and

Financial Engineering. Springer, New York, second edition, 2006.

page 9

