Frank-Wolfe / Conditional Gradient algorithm

Alexandre Gramfort

Master 2 Data Science, Univ. Paris Saclay Optimisation for Data Science

Constrained optimization problem for FW

We consider the constrained optimization problem (\mathcal{P}):

 $\min_{x\in\mathcal{D}}f(x)$

- where f is a convex **objective function**
- \mathcal{D} is the **domain** which we assume is a **convex** and **compact** set.
- \rightarrow Assuming f is smooth how would you solve this?
- \rightarrow Give me examples in machine learning of such a problem.

Constrained optimization problem for FW

We consider the constrained optimization problem (\mathcal{P}):

 $\min_{x\in\mathcal{D}}f(x)$

- where f is a convex **objective function**
- \mathcal{D} is the **domain** which we assume is a **convex** and **compact** set.
- \rightarrow Assuming *f* is smooth how would you solve this?
- \rightarrow Give me examples in machine learning of such a problem.

 $\textit{Remark:} \quad \text{Compactness of } \mathcal{D} \text{ is not necessary for projected gradient algo}.$

- Remark: Frank-Wolfe algorithm is a projection free algorithm.
- *Remark:* No assumption that \mathcal{D} is of finite dimension.

Constrained optimization problem

Image courtesy of Martin Jaggi (cf. [Jag13]).

Many applications

- network flows / transportation problems
- greedy selection and sparse optimization
- with wavelets (infinite-dimensional space)
- structured sparsity and structured prediction
- low-rank matrix factorizations, collaborative filtering
- total-variation-norm for image denoising
- submodular optimization
- boosting

Remark: Impressive revival in recent years in machine learning due to its low memory requirement and projection-free iterations

Application: Low-Rank Matrix Completion for collaborative filtering

Let $Y \in \mathbb{R}^{n \times m}$ be a partially observed data matrix.

Remark: Think of n as users and m as products and Y contains grades.

 Ω denotes the entries of Y that are observed $(|\Omega| \ll n \times m)$ We want to solve:

$$\min_{X\in\mathbb{R}^{n\times m}}\sum_{(i,j)\in\Omega}(Y_{ij}-X_{ij})^2\quad\text{s.t.}\ \|X\|_N\leq r.$$

where $||X||_N = \text{trace}\left(\sqrt{X^{\top}X}\right) = \sum_{i=1}^{\min\{m,n\}} \sigma_i(X)$. It is the <u>nuclear norm</u> (sum of singular values).

Remark: $\|\cdot\|_N$ is a convex approximation of the rank.

Remark: $C = \{X \in \mathbb{R}^{n \times m} \text{ s.t. } \|X\|_N \leq r\}$ convex.

Motivation

Algorithm

Convergence proo

Practice

LMO and linearization

• Linearization of f at x:

$$f(s) \approx f(x) + \langle \nabla f(x), s - x \rangle = g_x(s)$$

• The Linear Minimization Oracle (LMO)

$$LMO_{\mathcal{D}}(d) \stackrel{\Delta}{=} \arg\min_{s \in \mathcal{D}} \langle d, s \rangle \Rightarrow LMO_{\mathcal{D}}(\nabla f(x)) = \arg\min_{s \in \mathcal{D}} g_{x}(s)$$

• Idea: For $\gamma \in [0, 1]$

$$x^{k+1} = \gamma \operatorname{LMO}_{\mathcal{D}}(\nabla f(x^k)) + (1-\gamma)x_k$$

Remark: Step depends on domain \mathcal{D} and $\nabla f(x^k)$, hence the name **conditional** gradient.

Motivation

Algorithm

Convergence proof

Practice

Frank-Wolfe / Conditional Gradient algorithm

1: $x^0 \in \mathcal{D}$ 2: for k = 0 to n do 3: $s = \text{LMO}_{\mathcal{D}}(\nabla f(x^k))$ 4: $\gamma = \frac{2}{k+2}$ 5: $x^{k+1} = (1 - \gamma)x^k + \gamma s$ 6: end for 7: return x^{n+1}

Motivation

Algorithm

Convergence proof

Practice

Frank-Wolfe / Conditional Gradient algorithm

1: $x^{0} \in \mathcal{D}$ 2: for k = 0 to n do 3: $s = \text{LMO}_{\mathcal{D}}(\nabla f(x^{k}))$ 4: $\gamma = \frac{2}{k+2}$ 5: $x^{k+1} = (1 - \gamma)x^{k} + \gamma s$ 6: end for 7: return x^{n+1}

With line search:

$$\gamma = \operatorname*{arg\,min}_{\gamma \in [0,1]} f((1-\gamma)x^k + \gamma s)$$

Convergence

• Marguerite Frank and Philip Wolfe showed in [FW56] that:

$$f(x^k) - f(x^*) \le \mathcal{O}(1/k)$$

- Provided that:
 - f is smooth, convex and has some "curvature"
 - $\bullet \ \mathcal{D}$ is compact and convex

Remark: Same rates as projected gradient method but with simpler iterations. It is a projection free algorithm.

Remark: No free lunch: $LMO_D(\nabla f(x))$ needs to be easy.

Curvature constant vs. L-Liptschitz gradient

Let us define curvature constant C_f as:

$$C_f \stackrel{\Delta}{=} \sup_{\substack{x,s\in\mathcal{D},\\\gamma\in[0,1]\\y=x+\gamma(s-x)}} \frac{2}{\gamma^2} (f(y) - f(x) - \langle y - x, \nabla f(x) \rangle) \ .$$

Lemma

Let f be a convex and differentiable function with its gradient ∇f being Lipschitz-continuous w.r.t. some norm $\|\cdot\|$ over the domain \mathcal{D} with Lipschitz-constant $L_{\|\cdot\|} > 0$. Then:

$$C_f \leq \operatorname{diam}_{\|\cdot\|}(\mathcal{D})^2 L_{\|\cdot\|}$$

PROOF. Give it a try!

Remark: For L-smooth convex function on a compact convex domain: C_f exists

.

Convergence proof

Theorem

For f convex, with curvature C_f and D convex and compact. For each $k \ge 1$, the iterates x^k of the Frank-Wolfe algorithm satisfy

$$f(x^k) - f(x^*) \le \frac{2C_f}{k+2}$$

Algorithm

Convergence proof

Practice

Convergence proof

PROOF. By definition of the C_f :

$$f(y) \leq f(x) + \gamma \underbrace{\langle s - x, \nabla f(x) \rangle}_{-g(x)} + \frac{\gamma^2}{2} C_f$$

for all $x, s \in \mathcal{D}$, $y = x + \gamma(s - x)$, $\gamma \in [0, 1]$.

Writing $h(x^k) = f(x^k) - f(x^*)$ for the error on objective, we have: $h(x^{k+1}) \le h(x^k) - \gamma g(x^k) + \frac{\gamma^2}{2} C_f$ (Definition of C_f) $\le h(x^k) - \gamma h(x^k) + \frac{\gamma^2}{2} C_f$ ($h \le g$ by convexity & prop. of s) $= (1 - \gamma)h(x^k) + \frac{\gamma^2}{2} C_f$.

From here, the decrease rate follows from a simple lemma.

Convergence proof

Lemma

Suppose a sequence of numbers $(h_k)_k$ satisfies

$$h_{k+1} \leq (1-\gamma^k)h_k + (\gamma^k)^2C$$

for $\gamma^k = \frac{2}{k+2}$, and k = 0, 1, ..., and a constant C. Then

$$h_k \leq \frac{4C}{k+2}, \ k=0,1,\ldots$$

PROOF. Trivial by induction.

Remark: [LJJ13] shows a linear/exponential convergence if f strongly convex and use line-search. It is like projected gradient descent but without projection!

Algorithm

Convergence proof

Practice

Gap 🚺

Optimality certificate (almost for free)

We solve:

 $\min_{x \in D} f(x)$ Let: $\omega(x) = \min_{s \in D} f(x) + \langle \nabla f(x), s - x \rangle$ Lemma (Weak duality) $\omega(x) \le f(x^*) \le f(x)$

So if $f(x) - \omega(x) \le \epsilon$, x is an ϵ -solution.

Atomic Sets for fast LMO computation

lf

$$\mathcal{D} = \operatorname{conv}(\mathcal{A})$$

where ${\cal A}$ is a set (possibly infinite) of atoms/vectors. ${\cal A}$ is an "Atomic Set"

Then we have that $\forall x \in \mathcal{D}, LMO_{\mathcal{D}}(\nabla f(x)) \in \mathcal{A}$ (follows from the def. of a convex hull).

Example: ℓ_1 ball is an atomic set

$$\mathcal{D} = \operatorname{conv}(\{e_i | i \in [n]\} \cup \{-e_i | i \in [n]\})$$

So $\operatorname{LMO}_{\mathcal{D}}(\nabla f(x^k)) \in \{e_i | i \in [n]\} \cup \{-e_i | i \in [n]\}.$

Remark: We just need to find the smallest $\langle \nabla f(x_k), \pm e_i \rangle$

 \rightarrow frank_wolfe.ipynb notebook.

References

M. Frank and P. Wolfe.

An algorithm for quadratic programming. Naval Res. Logis. Quart., 1956.

Martin Jaggi.

Revisiting frank-wolfe: Projection-free sparse convex optimization.

In ICML, volume 28, pages 427-435, June 2013.

S. Lacoste-Julien and M. Jaggi.

An affine invariant linear convergence analysis for frank-wolfe algorithms.

arXiv preprint arXiv:1312.7864, 2013. https://arxiv.org/pdf/1312.7864.