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Constrained optimization problem for FW

We consider the constrained optimization problem (P):

min
x∈D

f (x)

where f is a convex objective function

D is the domain which we assume is a convex and compact set.

→ Assuming f is smooth how would you solve this?
→ Give me examples in machine learning of such a problem.

Remark: Compactness of D is not necessary for projected gradient algo.

Remark: Frank-Wolfe algorithm is a projection free algorithm.

Remark: No assumption that D is of finite dimension.
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Constrained optimization problem

min
x∈D

f (x)

Image courtesy of Martin Jaggi (cf. [Jag13]).
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Many applications

network flows / transportation problems

greedy selection and sparse optimization

with wavelets (infinite-dimensional space)

structured sparsity and structured prediction

low-rank matrix factorizations, collaborative filtering

total-variation-norm for image denoising

submodular optimization

boosting

Remark: Impressive revival in recent years in machine learning due to its

low memory requirement and projection-free iterations
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Application:
Low-Rank Matrix Completion for collaborative filtering

Let Y ∈ Rn×m be a partially observed data matrix.

Remark: Think of n as users and m as products and Y contains grades.

Ω denotes the entries of Y that are observed (|Ω| ≪ n ×m)

We want to solve:

min
X∈Rn×m

∑
(i ,j)∈Ω

(Yij − Xij)
2 s.t. ∥X∥N ≤ r .

where ∥X∥N = trace
(√

X⊤X
)
=

∑min{m, n}
i=1 σi (X ).

It is the nuclear norm (sum of singular values).

Remark: ∥ · ∥N is a convex approximation of the rank.

Remark: C = {X ∈ Rn×m s.t. ∥X∥N ≤ r} convex.
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LMO and linearization

Linearization of f at x :

f (s) ≈ f (x) + ⟨∇f (x), s − x⟩ = gx(s)

The Linear Minimization Oracle (LMO)

LMOD(d)
∆
= argmin

s∈D
⟨d , s⟩

⇒ LMOD(∇f (x)) = argmin
s∈D

gx(s)

Idea: For γ ∈ [0, 1]

xk+1 = γLMOD(∇f (xk)) + (1− γ)xk

Remark: Step depends on domain D and ∇f (xk), hence the name conditional

gradient.
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Frank-Wolfe / Conditional Gradient algorithm

1: x0 ∈ D
2: for k = 0 to n do
3: s = LMOD(∇f (xk))
4: γ = 2

k+2

5: xk+1 = (1− γ)xk + γs
6: end for
7: return xn+1

With line search:

γ = argmin
γ∈[0,1]

f ((1− γ)xk + γs)
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Convergence

Marguerite Frank and Philip Wolfe showed in [FW56] that:

f (xk)− f (x∗) ≤ O(1/k)

Provided that:

f is smooth, convex and has some “curvature”
D is compact and convex

Remark: Same rates as projected gradient method but with simpler

iterations. It is a projection free algorithm.

Remark: No free lunch: LMOD(∇f (x)) needs to be easy.
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Curvature constant vs. L-Liptschitz gradient

Let us define curvature constant Cf as:

Cf
∆
= sup

x ,s∈D,
γ∈[0,1]

y=x+γ(s−x)

2

γ2
(f (y)− f (x)− ⟨y − x ,∇f (x)⟩) .

Lemma

Let f be a convex and differentiable function with its gradient ∇f being
Lipschitz-continuous w.r.t. some norm ∥ · ∥ over the domain D with
Lipschitz-constant L∥·∥ > 0. Then:

Cf ≤ diam∥·∥(D)2L∥·∥ .

proof. Give it a try!

Remark: For L-smooth convex function on a compact convex domain: Cf exists
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Convergence proof

Theorem

For f convex, with curvature Cf and D convex and compact. For
each k ≥ 1, the iterates xk of the Frank-Wolfe algorithm satisfy

f (xk)− f (x∗) ≤ 2Cf

k + 2
.
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Convergence proof

proof. By definition of the Cf :

f (y) ≤ f (x) + γ ⟨s − x ,∇f (x)⟩︸ ︷︷ ︸
−g(x)

+
γ2

2
Cf

for all x , s ∈ D, y = x + γ(s − x), γ ∈ [0, 1].

Writing h(xk) = f (xk)− f (x∗) for the error on objective, we have:

h(xk+1) ≤ h(xk)− γg(xk) +
γ2

2
Cf (Definition of Cf )

≤ h(xk)− γh(xk) +
γ2

2
Cf (h ≤ g by convexity & prop. of s)

= (1− γ)h(xk) +
γ2

2
Cf .

From here, the decrease rate follows from a simple lemma.
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Convergence proof

Lemma

Suppose a sequence of numbers (hk)k satisfies

hk+1 ≤ (1− γk)hk + (γk)2C

for γk = 2
k+2 , and k = 0, 1, . . . , and a constant C . Then

hk ≤ 4C

k + 2
, k = 0, 1, . . .

proof. Trivial by induction.
Remark: [LJJ13] shows a linear/exponential convergence if f strongly

convex and use line-search. It is like projected gradient descent but

without projection!
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Optimality certificate (almost for free)

We solve:

min
x∈D

f (x)

Let:

ω(x) = min
s∈D

f (x)+⟨∇f (x), s−x⟩

Lemma (Weak duality)

ω(x) ≤ f (x∗) ≤ f (x)

So if f (x)− ω(x) ≤ ϵ, x is an
ϵ-solution.
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Atomic Sets for fast LMO computation

If
D = conv(A)

where A is a set (possibly infinite) of atoms/vectors. A is an
“Atomic Set”

Then we have that ∀x ∈ D,LMOD(∇f(x)) ∈ A (follows from the
def. of a convex hull).

Example: ℓ1 ball is an atomic set

D = conv({ei |i ∈ [n]} ∪ {−ei |i ∈ [n]})

So LMOD(∇f (xk)) ∈ {ei |i ∈ [n]} ∪ {−ei |i ∈ [n]}.

Remark: We just need to find the smallest ⟨∇f (xk),±ei ⟩
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Let’s practice

→ frank wolfe.ipynb notebook.
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