
Exercises: intro to optimization and gradient descent

1 Convexity: general results

1.1

Show that a sum of smooth functions is smooth. What is the corresponding smoothness constant?

Show that the sum of strongly convex functions is strongly convex. What is the corresponding strong
convexity constant ?

1.2

Show that x → ∥x∥ is convex, where ∥ · ∥ is any norm on Rd.

1.3

Let f : Rd → R convex. Show that g(x) = f(Ax + b) is convex, where A ∈ Rd×d and b ∈ Rd. If f is
µ-strongly convex, is g strongly convex? If so, what is a strong convexity constant of g? If f is L-smooth,
is g smooth? If so, what is a smoothness constant of g?

Hint: You can demonstrate, and then use the fact that σmin(AB) ≥ σmin(A)σmin(B) and σmax(AB) ≤
σmax(A)σmax(B) for two square matrices A, B.

1.4

Let h1, . . . , hn : R → R some convex function, X ∈ Rn×p and define

f(w) =
1

n

n∑
i=1

hi(⟨xi, w⟩),

where xi ∈ Rp is the n-th row of X. Assume that the hi are such that supt∈R h′′
i (t) = M < +∞. Show

that f is smooth, and determine a smoothness constant.

2 Convexity / non-convexity of matrix functions

2.1

Let m ∈ R and define f(x) = 1
2 (x−m)2, g(a, b) = 1

2 (ab−m)2. What are the gradient/ Hessian of these
functions? Are these functions convex ?

2.2

Determine the set of points a, b such that ∇2g(a, b) is positive. What do you observe at the minimum?
Could we have predicted this?
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2.3

Let M ∈ Rp×p and define f(X) = 1
2∥X −M∥2F , g(A,B) = 1

2∥AB −M∥2F where A,B ∈ Rp×p. What are
the gradient/ Hessian of these functions? Are these functions convex ?

Hint: here, it is convenient to write the Hessians as linear operators. For instance for f , we can write
∇2f(X)(U) = . . . where . . . is a linear function of U ∈ Rp×p. For a vector function h : Rd → R one can
recover the gradient and Hessian by taking identifying the terms in the Taylor expansion of h(x+ε):

f(x+ ε) = f(x) + ⟨∇f(x), ε⟩+ 1

2
⟨ε,∇2f(x)ε⟩+ . . .

3 Polyak-Lojasciewicz inequality

Let f : R → R be a µ-strongly convex function. Let x∗ its arg-minimum. Show that f verifies the
Polyak-Lojasciewicz inequality:

∀x ∈ Rd, f(x)− f(x∗) ≤ 1

2µ
∥∇f(x)∥2

4 Gradient descent in a simple case

We let p ≥ 0, and consider a vector b ∈ Rp and a matrix A ∈ Rp×p. We assume that A is a symmetric
matrix with positive eigenvalues λmax = λ1 ≥ · · · ≥ λp = λmin. We define the following quadratic objective
function:

f(x) =
1

2
x⊤Ax− b⊤x

Exercise 1: Show that this function is convex, and that its gradient is given by ∇f(x) = Ax− b. Find
the analytical expression of its minimizer x∗, and of f(x∗).

We now consider the sequence of iterates of gradient descent with a step size ρ > 0, starting from
x0 = 0:

For n ≥ 0 : xn+1 = xn − ρ∇f(xn)

Exercise 2: Obtain a closed form expression for xn. Hint : what recursion does the sequence yn = xn−x∗

satisfy?

We now use the spectral decomposition of A, and write

A = U⊤DU

where D = diag(λ1, . . . , λp) contains the eigenvalues of A and U ∈ Rp×p contains the eigenvectors of A.
We recall that UU⊤ = U⊤U = Ip.

Exercise 3: Define zn = U(xn − x∗). Show that zn is given by

zn = (Ip − ρD)nz0

Give a condition on ρ for this sequence to converge to 0.

In the following, we assume that ρ = 1
λmax

.

Exercise 4: Demonstrate that ∥xn − x∗∥ ≤ (1− λmin

λmax
)n∥x∗∥.

This is what we call linear convergence, and 1− λmin

λmax
is the rate of convergence.
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The quantity κ = λmin

λmax
is called the conditioning of the matrix A, and, by extension, of the function f . This

number is always between 0 and 1. The closer it is to one, the faster gradient descent converges.

Here, if for instance κ = 1
2 , then the convergence is very fast: ∥xn − x∗∥ ≤ 1

2n ∥x
∗∥, every iteration halves

the error. However, in some cases we can have some very poorly conditioned problems.

Exercise 5: Assume that κ = 1
1000 , and that ∥x∗∥ = 1. How many iterations of gradient descent are

needed to reach an error ∥xn − x∗∥ ≤ 1
10? and to get ∥xn − x∗∥ ≤ 1

100?

In these badly conditioned case, it would be useful to obtain a bound on the error that does not depend
on the conditioning of the problem. To get such a bound, we look at another measure of the error,
f(xn)− f(x∗).

Exercise 6: Show that for all x, f(x)− f(x∗) = 1
2 (x− x∗)⊤A(x− x∗). Deduce a closed form formula for

f(xn)− f(x∗).

We are now ready to give a bound that does not depend on the conditioning of the problem:

Exercise 7: Show that for all µ ∈ [0, 1] and all n we have (1− µ)2nµ ≤ 1
2n+1 . Deduce that

f(xn)− f(x∗) ≤ 1

ρ(2n+ 1)
∥x∗∥2

This is what we call sub-linear convergence. Note that this rate of convergence does not get worse when
λmin goes to 0: it does not depend on the conditioning of the problem.
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