
(BONUS) Exercise List: Proving convergence of the Stochastic

Gradient Descent for smooth and convex functions.

Robert M. Gower

October 15, 2024

1 Introduction

Consider the problem

w∗ ∈ argmin
w

(
1

n

n∑
i=1

fi(w)
def
= f(w)

)
, (1)

where we assume that f(w) is µ–strongly quasi-convex

f(w∗) ≥ f(w) + ⟨w∗ − w,∇f(w)⟩+ µ

2
∥w − w∗∥2, (2)

and each fi is convex and Li–smooth

fi(w + h) ≤ fi(w) + ⟨∇fi(w), h⟩+
Li

2
∥h∥2, for i = 1, . . . , n. (3)

Here we will provide a modern proof of the convergence of the SGD algorithm

wt+1 = wt − γt∇fit(w
t), where it ∼

1

n
. (4)

The result we will prove is given in the following theorem.

Theorem 1.1. Assume f is µ-quasi-strongly convex and the fi’s are convex and Li–smooth. Let
Lmax = maxi=1,...,n Li and let

σ2 def
=

n∑
i=1

1

n
∥∇fi(w

∗)∥2. (5)

Choose γt = γ ∈ (0, 1
2Lmax

] for all t. Then the iterates of SGD given by (4) satisfy:

E∥wt − w∗∥2 ≤ (1− γµ)t ∥w0 − w∗∥2 + 2γσ2

µ . (6)

2 Proof of Theorem 1.1

We will now give a modern proof of the convergance of SGD.
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Ex. 1 — Let Et [·]
def
= E

[
· |wt

]
and consider the tth iteration of the SGD method (4). Show that

Et

[
∇fit(w

t)
]
= ∇f(wt).

Ex. 2 — Let Et [·]
def
= E

[
· |wt

]
be the expectation conditioned on wt. Using a step of SGD (4)

show that

Et

[
∥wt+1 − w∗∥2

]
= ∥wt − w∗∥2 − 2γ

〈
wt − w∗,∇f(wt)

〉
+ γ2

n∑
i=1

1

n
∥∇fi(w

t)∥2. (7)

Ex. 3 — Now we need to bound the term
∑n

i=1
1
n∥∇fi(w

t)∥2 to continue the proof. We break
this into the following steps.

Part I

Using that each fi is Li–smooth and convex and using Lemma A.1 in the appendix show that

n∑
i=1

1

2nLi
∥∇fi(w)−∇fi(w

∗)∥22 ≤ f(w)− f(w∗). (9)

Hint : Remember that ∇f(w∗) = 0.
Now let Lmax = maxi=1,...,n Li and conlude that

n∑
i=1

1

n
∥∇fi(w)−∇fi(w

∗)∥22 ≤ 2Lmax(f(w)− f(w∗)). (10)

Part II

Using (10) and Definition 5 show that

n∑
i=1

1

n
∥∇fi(w)∥2 ≤ 4Lmax(f(w)− f(w∗)) + 2σ2. (11)

Ex. 4 — Using (11) together with (7) and the strong quasi-convexity (2) of f(w) show that

Et

[
∥wt+1 − w∗∥2

]
≤ (1− µγ)∥wt − w∗∥2 + 2γ(2γLmax − 1)(f(wt)− f(w∗)) + 2σ2γ2. (15)

Ex. 5 — Using that γ ∈ (0, 1
2Lmax

] conclude the proof by taking expectation again, and unrolling
the recurrence.

Ex. 6 — BONUS importance sampling: Let it ∼ pi in the SGD update (4), where pi > 0 are
probabilities with

∑n
i=1 pi = 1. What should the pi’s be so that SGD has the fastest convergence?

3 Decreasing step-sizes

Based on Theorem 1.1 we can introduce a decreasing stepsize.
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Theorem 3.1 (Decreasing stepsizes). Let f be µ–strongly quasi-convex and each fi be Li–smooth

and convex. Let K def
= Lmax/µ and

γt =


1

2Lmax
for t ≤ 4⌈K⌉

2t+1
(t+1)2µ

for t > 4⌈K⌉.
(18)

If t ≥ 4⌈K⌉, then SGD iterates given by (4) satisfy:

E∥wt − w∗∥2 ≤ σ2

µ2

8

t
+

16

e2
⌈K⌉2

t2
∥w0 − w∗∥2. (19)

Proof. Let γt
def
= 2t+1

(t+1)2µ
and let t∗ be an integer that satisfies γt∗ ≤ 1

2Lmax
. In particular this holds

for
t∗ ≥ ⌈4K − 1⌉.

Note that γt is decreasing in t and consequently γt ≤ 1
2Lmax

for all t ≥ t∗. This in turn guarantees
that (6) holds for all t ≥ t∗ with γt in place of γ, that is

E∥rt+1∥2 ≤ t2

(t+ 1)2
E∥rt∥2 + 2σ2

µ2

(2t+ 1)2

(t+ 1)4
. (20)

Multiplying both sides by (t+ 1)2 we obtain

(t+ 1)2E∥rt+1∥2 ≤ t2E∥rt∥2 + 2σ2

µ2

(
2t+ 1

t+ 1

)2

≤ t2E∥rt∥2 + 8σ2

µ2
,

where the second inequality holds because 2t+1
t+1 < 2. Rearranging and summing from j = t∗ . . . t

we obtain:
t∑

j=t∗

[
(j + 1)2E∥rj+1∥2 − j2E∥rj∥2

]
≤

t∑
j=t∗

8σ2

µ2
. (21)

Using telescopic cancellation gives

(t+ 1)2E∥rt+1∥2 ≤ (t∗)2E∥rt∗∥2 + 8σ2(t− t∗)

µ2
.

Dividing the above by (t+ 1)2 gives

E∥rt+1∥2 ≤ (t∗)2

(t+ 1)2
E∥rt∗∥2 + 8σ2(t− t∗)

µ2(t+ 1)2
. (22)

For t ≤ t∗ we have that (6) holds, which combined with (22), gives

E∥rt+1∥2 ≤ (t∗)2

(t+ 1)2

(
1− µ

2Lmax

)t∗

∥r0∥2

+
σ2

µ2(t+ 1)2

(
8(t− t∗) +

(t∗)2

K

)
. (23)
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Choosing t∗ that minimizes the second line of the above gives t∗ = 4⌈K⌉, which when inserted
into (23) becomes

E∥rt+1∥2 ≤ 16⌈K⌉2

(t+ 1)2

(
1− 1

2K

)4⌈K⌉
∥r0∥2

+
σ2

µ2

8(t− 2⌈K⌉)
(t+ 1)2

≤ 16⌈K⌉2

e2(t+ 1)2
∥r0∥2 + σ2

µ2

8

t+ 1
, (24)

where we have used that
(
1− 1

2x

)4x ≤ e−2 for all x ≥ 1.

A Appendix: Auxiliary smooth and convex lemma

As a consequence of the fi’s being smooth and convex we have that f is also smooth and convex.
In particular f is convex since it is a convex combination of the fi’s. This gives us the following
useful lemma.

Lemma A.1. If f is both L–smooth

f(z) ≤ f(w) + ⟨∇f(w), z − w⟩+ L

2
∥z − w∥22 (25)

and convex
f(z) ≥ f(y) + ⟨∇f(y), z − y⟩ , (26)

then we have that

f(y)− f(w) ≤ ⟨∇f(y), y − w⟩ − 1

2L
∥∇f(y)−∇f(w)∥22. (27)

Proof. To prove (27), it follows that

f(y)− f(w) = f(y)− f(z) + f(z)− f(w)

(26)+(25)

≤ ⟨∇f(y), y − z⟩+ ⟨∇f(w), z − w⟩+ L

2
∥z − w∥22.

To get the tightest upper bound on the right hand side, we can minimize the right hand side in z,
which gives

z = w − 1

L
(∇f(w)−∇f(y)). (28)

Substituting this in gives

f(y)− f(w) =

〈
∇f(y), y − w +

1

L
(∇f(w)−∇f(y))

〉
− 1

L
⟨∇f(w),∇f(w)−∇f(y)⟩+ 1

2L
∥∇f(w)−∇f(y)∥22

= ⟨∇f(y), y − w⟩ − 1

L
∥∇f(w)−∇f(y)∥22 +

1

2L
∥∇f(w)−∇f(y)∥22

= ⟨∇f(y), y − w⟩ − 1

2L
∥∇f(w)−∇f(y)∥22.
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