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Objective of this course

Optimization in machine learning and data science

I All ML and data science methods rely on numerical optimization.

I Understanding the method ≡ understanding the optimization problem.

I What is inside the black box of the skikit-learn .fit() function ?

Your objective

I Recognize the properties of optimization problems.

I Understand the optimization problems in ML approaches.

I Model new optimization problems (new ML method).

I Find a proper algorithm for a given problem.

I Be able to implement an optimization algorithm.
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Numerical optimization problem

Problem formulation

min
x∈C

F (x) (1)

I F is the objective function (sometime called cost function).

I x = [x1, . . . , xn]> ∈ Rn is a vector of n variables.

I C ⊆ Rn is the set of admissible solutions.

I Objective : Find a solution x? ∈ C, having the minimal value for F such that

F (x?) ≤ F (x), ∀x ∈ C.

Assumptions (in this course)

I The problem is proper (there exists a solution), F is lower bounded on C.

I You have access to F and C (mathematical expression, no black box).

Notation : Lowercase bold is a vector, Uppercase bold is a matrix.
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Standard constrained optimization

Problem reformulation

min
x∈Rn

F (x)

with hj(x) = 0 ∀j = 1, . . . , p
and gi(x) ≤ 0 ∀i = 1, . . . , q.

(2)

I This problem is equivalent to (7) when C can be expressed as

C =
{
x ∈ Rn

∣∣ hj(x) = 0, ∀j = 1, . . . , p and gi(x) ≤ 0, ∀i = 1, . . . , q
}
.

I hj and gi define respectively the equality and inequality constraints.

I When p = q = 0 the problem is said to be unconstrained and C = Rn.

I The complexity of solving problems (7) and (2) depends on the properties of F
and C.

I Problem above is a standard formulation for constrained optimization.
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Definitions

min
x∈C

F (x)

Feasible point

Any point x ∈ C that satisfy the constraints in set C.

Optimal value

Minimal value function on the feasible set C, often denoted as F ?.

Optimality/Optimal solution

x? ∈ C is a solution of the optimization problem if satisfies the constraints in set C and

F (x?) ≤ F (x), ∀x ∈ C.

x? might not be unique in the general case.

Sub-optimal point

x ∈ C. is an ε-suboptimal point of the problem for ε > 0 if

F (x) ≤ F (x?) + ε

Active constraint
gi is considered an active constraint in x if gi(x) = 0.
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Exercise 1: Positive least square reformulation

Problem

min
x≥0

‖y −Hx‖2, with y ∈ Rm and H ∈ Rm×n

Exercise

1. Express F (x) and C for the problem above.

F (x) = ‖y −Hx‖2, C = {x ∈ Rn|xi ≥ 0 ∀i} = R+n

2. Find p, q the number of constraints :

p=0, q=n

3. Express hj and gi if there are somme constraints:

gi(x) = −xi, ∀i ∈ 1, . . . , n
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Numerical optimization algorithm

min
x∈C

F (x)

Iterative optimization algorithm

An iterative algorithm A is an algorithm providing a series x(k) for k = 0, 1, . . . of
iterates x(k+1) = A(x(k)) that converges to a solution x? of the optimization problem
starting from an initial guess x(0).

I If F (x(k+1)) ≤ F (x(k)), ∀k then it is called a descent algorithm.

I In practice iterations are stopped when a convergence criterion is met.

Convergence of iterative methods

I The convergence speed can be expressed in objective value

|F (x(k+1))− F (x?)| ≤ γ|F (x(k+1))− F (x?)|q (3)

I Or it can be expressed in terms of iterates:

‖x(k+1) − x?‖ ≤ γ‖x(k+1) − x?‖q (4)

where γ ∈ [0, 1) and q ≥ 1 is the convergence order (q = 1 linear, q = 2 quadratic...).
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Properties of optimization problems

Know your optimization problem (and its properties)

I They with guide you toward the proper solver.

I They tell you how much you can trust the solution (well posed, unique solution).

I They will help you design the optimization problem.

Convexity

I Well posed problem.

I Unique solution when strict
convexity.

Smoothness

I Continuity, differentiability

I When function smooth, one can
use its gradients.

Solutions

I What is a solution of the optimization problem ?

I Criterions for reaching a solution (stopping the algorithm).
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Convex set

Convex Non convex Non convex

Definition: Convex set
C ⊂ Rn is a convex set if for any two points x,y ∈ C2 and for any 0 ≤ α ≤ 1 we have

αx + (1− α)y ∈ C

Image from [Boyd and Vandenberghe, 2004]
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Examples of convex sets

Examples

I Rn

I Positive orthant of Rn : Rn+.

I Hyperplan : {x ∈ Rd : a>x = b}
I Half space: {x ∈ Rd : a>x ≤ b}
I Polyhedra: {x ∈ Rd : Ax ≤ b}
I Gömböc
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Operations on set preserving convexity (1)

Intersection

If Xk are convex set ∀k then their intersection

K⋂

k=1

Xk

is also convex.
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Operations on set preserving convexity (2)

Cartesian product

If Xk ⊂ Rnk , are convex ∀k = 1, · · · ,M then

X1 ×X2 × · · · × ×XM = {(x1,x2, · · · ,xM ) : xk ∈ Xk}

is convex.

Affine transform

If X ⊂ Rd is convex and A(x) 7→ Ax + b is an affine transform defined by matrix
A ∈ Rp×d and vector b then

A(X ) = {A(x) : x ∈ X}

is convex. These transformations include translation and rotations.
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Convex function

Definition: Convex function

A function F is said to be convex if it lies below its chords, that is

∀x,y ∈ Rn, F (αx + (1− α)y) ≤ αF (x) + (1− α)F (y), with 0 ≤ α ≤ 1. (5)

I A function is said to be strictly convex when the two inequalities are strict.

I Strict convexity implies that the function has a unique minimum.

I If a function F is convex, then the set {x ∈ Rn | F (x) ≤ 0} is convex.

I A function F is concave if −F is convex.
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Examples of functions in R
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Convex functions

f(x)=ax+b
f(x)=exp(x)
f(x)=|x|
f(x)=xlog(x)

2 1 0 1 2
3

2

1

0
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Concave functions

f(x)=ax+b
f(x)=x^p, p=1/2
f(x)=log(x)

Convex functions

I Affine functions : x 7→ ax+ b pour tout a, b ∈ R.

I Exponential functions : x 7→ eax pour tout a ∈ R.

I Power of absolute value : x 7→ |x|p, pour tout p ≥ 1.

I Neg-entropy : x 7→ x log x pour x > 0

Concave Functions

I Affine functions : x 7→ ax+ b pour tout a, b ∈ R.

I Power : x 7→ xp, pour x > 0 et pour tout 0 ≤ p ≤ 1.

I Logarithm : x 7→ log x pour x > 0
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Operations preserving convexity (1)

Positive sum
Let λ1, λ2 ≥ 0 and f1, f2 two convex function then

λ1f1 + λ2f2

is convex.

Composition with affine function

let A ∈ Rp×d and b ∈ Rp and f : Rp 7→ R be a convex function, the the composition

f(Ax + b)

is convex

Example

I Log barrier : f(x) = −∑m
i=1 log(bi − a>i x) with domf = {x : a>i x ≤ bi}

I Norm of an affine function : f(x) = ‖Ax + b‖
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Operations preserving convexity (2)

Composition

I let g : Rd 7→ R be a convex function and h : R 7→ R be a convex and increasing
function, then

f(x) = h(g(x))

is convex.

Maximum

I If f1, · · · , fm are convex functions then

f(x) = max
i
{f1(x), · · · , fm(x)}

is convex.

Example

I Piecewise linear function: f(x) = maxi=1,··· ,m(a>i x + b)
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Convexity in optimization

Convex optimization problem

min
x∈C

F (x)

I The problem is convex if F is a convex function and C is a convex set.

I Any local minimizer of a convex function is a global minimizer.

I If the function is strictly convex the minimizer is unique.

I Maximizing a concave function under convex constraints is a convex problem.

Disciplined Convex Programming [Grant et al., 2006]

I Express the objective function and constraints as combination and composition of
operations preserving convexity.

I Allows for designing generic solvers (Matlab [Grant and Boyd, 2014], Python
[Diamond and Boyd, 2016]).
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Smoothness and continuity

Differentiability classes

Let f be a real function. Then f is of differentiability class Ck if and only if dkf(x)

dxk
is

continuous.

I C0 is the set of continuous real functions.

I C1 is the set of real functions with continuous derivatives.

I A real function f is smooth if it is of differentiability class C∞.

Exercise 2: Differentiability and convexity

Function Diff. Class Convexity

f(x) = x2

C∞ X

f(x) = ex

C∞ X

f(x) = |x|

C0 X

f(x) = max(x, 0)

C0 X

f(x) = sign(x)

Not continuous

f(x) = log(1 + exp(x))

C∞ X

f(x) = 2x+ 1

C∞ X

f(x) = max(x, 0)2

C1 X
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Gradient of a function
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Gradient
The gradient ∇F (x) of a function F : Rn → R at point x is the vector whose
components are the partial derivatives of F

∇xF (x) =

[
∂F (x)

∂x1
, . . . ,

∂F (x)

∂xn

]T
(6)

I If the gradient exists ∀x in the domain of F , the function F is called
differentiable.

I ∇xF (x) give the steepest direction (where F is increasing the most).

I The vector normal to surface (x, F (x)) is given by (∇xF (x),−1).
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Exercise 3: Gradient computation
Two variables

F (x) = x1 − x1x2 − x2

Compute the gradient ∇xF (x):

∇xF (x) =

[
1− x2

−1− x1

]

Quadratic loss

F (x) = ‖Hx− y‖2

Compute the gradient ∇xF (x):

∇xF (x) =

2HT (Hx− y)

Exponential with linear function

F (x) = exp(wTx + b)

Compute the gradient ∇xF (x):

∇xF (x) =

w exp(wTx + b)
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Gradient and convexity

Gradient of a convex function
F a differentiable function is convex if and only if

F (y) ≥ F (x) +∇F (x)>(y − x) ∀y,x ∈ domF (7)

I A convex function is lower bounded by its local linear approximation.

I For unconstrained problems with C = Rn, if F is convex and differentiable, x is a
global minimum if and only if

∇xF (b) = 0
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Hessian and second derivatives

Hessian of a function
The Hessian matrix H = ∇2

xF (x) of a twice differentiable function F is the matrix
whose components can be expressed as

Hi,j =
(
∇2

xF (x)
)
i,j

=
∂2F (x)

∂xi∂xj

I F is a convex function if and only if ∇2
xF (x) is semi definite positive ∀x ∈ domF .

I If ∇2
xF (x) is strictly positive definite ∀x ∈ domF then F is strictly convex.

I The order 2 Taylor approximation of the function around x0 can be expressed as

F (x) ≈ F (x0) +∇x0F (x0)T (x− x0)︸ ︷︷ ︸
Linear term

+ (x− x0)TH(x− x0)︸ ︷︷ ︸
Quadratic term

(8)

The approximation is exact if F is a polynomial of order ≤ 2
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Exercise 4: Hessian computation
Two variables

F (x) = x1 − x1x2 − x2

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) =

[
0 −1
−1 0

]
, Not PSD

Quadratic loss

F (x) = ‖Hx− y‖2

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) =

2HTH, PSD

Exponential with linear function

F (x) = exp(wTx + b)

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) =

exp(wTx + b)wwT , PSD
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Subgradients and subdifferential

−1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

−1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Non differentiable function

I For a convex function F (x), g is a subgradient of F in x0 if

F (x) ≥ F (x0) + g>(x− x0) (9)

I The set of all subgradients at x0 is the subdifferential ∂f(x0).

I If F is differentiable in x0 there is a unique subgradient: ∂f(x0) = {∇xF (x)}
I x? is a minimum of the unconstrained convex function F if 0 ∈ ∂F (x?).
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Exercise 5: Subgradients
Find the subdifferential ∂F (x) for the following functions:

1. F (x) = |x|, at x ∈ {−1, 0, 1}

∂F (−1) = {−1}, ∂F (0) = {g| − 1 ≤ g ≤ 1}, ∂F (1) = {1}

2. F (x) = max(x, 0), at x ∈ {−1, 0, 1}

∂F (−1) = {0}, ∂F (0) = {g|0 ≤ g ≤ 1}, ∂F (1) = {1}

3. F (x) = max(x, 0) + x, at x ∈ {−1, 0, 1}

∂F (−1) = {0}, ∂F (0) = {g|1 ≤ g ≤ 2}, ∂F (1) = {2}

4. F (x) = |x|+ x2, at x ∈ {−1, 0, 1}

∂F (−1) = {−3}, ∂F (0) = {g| − 1 ≤ g ≤ 1}, ∂F (1) = {3}
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Lipschitz continuity

Lipschitz function

Function F is called Lipschitz or Lipschitz continuous if there exists a constant
K > 0 such that ∀x,y ∈ C2

|F (x)− F (y)| ≤ K‖x− y‖ (10)

I A K satisfying the above constraint is called a Lipschitz constant of the function.

I If K < 1 the function is a contraction.

I Function F is gradient Lipschitz if ∀x,y ∈ C2

‖∇F (x)−∇F (y)‖ ≤ K‖x− y‖ (11)

I Lipschitz functions can be easily upper bounded,
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Semicontinuity

x0 x0
x0

Lower semi-continuous function
A function F is lower semi-continuous (l.s.c.) if for any point x0 ∈ C we have

F (x0) ≤ lim
x→x0

inf F (x) (12)

I Continuous functions are l.s.c. since it implies the equality above.

I If the function is l.s.c., there exists a local affine minorant.

I If the function is l.s.c. and convex it means that the sub-differential is never
empty and the minorant is global.
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Constraints VS non-smooth

Characteristic function
Let A be a subset of Rn, the characteristic functionχA of A is the function

χA(x) =

{
0, if x ∈ A
+∞, if x 6∈ A (13)

I If A is a closed set, χA is lower semi-continuous.

I If A is a closed convex set, χA is convex.

Equivalent optimization problems

min
x∈C

F (x) ≡ min
x∈Rn

F (x) + χC(x)

I Constrained OP can be reformulated as a non-smooth unconstrained OP.

I The new objective function is a sum of two functions (splitting algorithms).
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Convexity and smoothness in machine learning

Class 1

Class 2

m

Convex and smooth problems

I Smooth problem provides us with gradients for iterative methods.

I Convexity means the a solution of the problem is global.

I Convexity leads to several efficient algorithms.

ML approaches relying on convex problems

I Least square regression, Lasso.

I Support Vector Machines.

I Logistic and multinomial regression.
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Local and global solutions

min
x∈C

F (x)

Local solution
For the optimization problem above, a feasible point x? ∈ C is a local optimum if there
exists R > 0 such that

F (x?) ≤ f(x) ∀x ∈ {x ∈ C, ‖x− x?‖ ≤ R}

I If the problem is convex, all local optimum are global.

I For non-convex function, the optimum is global only if the equation is true for all
R > 0.
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First order condition

Convex and differentiable function
For the following problem

min
x∈C

F (x)

the feasible point x? ∈ C is globally optimal if and only if

∇F (x?)>(y − x) ≥ 0 ∀y ∈ C

I Any feasible direction from x? is
aligned with an increasing gradient.

I If C = Rd, the condition is equivalent
to

∇F (x?) = 0
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Empirical risk minimization

Supervised Machine learning

min
f

1

N

N∑

i=1

L(yi, f(xi)) (14)

I Find the function f that minimizes the average error L of prediction on a finite
dataset of size N .

I Usually fθ is parametrized by θ ∈ Rn so the optimization is done w.r.t. θ.

I The objective above is called Empirical Risk Minimization, but beware of
over-fitting when the model f is too complex.

Structural Risk Minimization [Vapnik, 2013]

min
f

1

N

N∑

i=1

L(yi, f(xi)) + λR(f) (15)

I R(f) is a regularization term that measure the complexity of f .

I λ is a regularization parameter that weight the regularization.
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Least Square and ridge regression
Linear regression

min
x

1

2
‖Hx− y‖2 + λ

1

2
‖x‖2

I Objective: predict a continuous value with a linear model (regression).

I Quadratic loss : L(y, f(x)) = 1
2
(y − f(x))2

I Quadratic regularization : R(x) = 1
2
‖x‖2.

I Smooth and strictly convex problem when λ > 0.

I Can be solved by solving a linear problem (linear equations).

Non-linear regression

min
θ

1

N

N∑

i=1

(yi − fθ(xi))
2

I Classical formulation for regression with neural networks.

I Can be non-convex and non-smooth depending on the architecture of fθ.

I Harder to regularize (what is the complexity of fθ ?).
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Data fitting for regression

Cost L(y, ŷ) Smooth. Cvx.

Square (y − ŷ)2 X X
Absolute value |y − ŷ| - X
ε insensible max(0, |y − ŷ| − ε) - X

2 1 0 1
y−ŷ

0

1

2

3

L
(y
,ŷ

)

Coûts de régression

(y−ŷ)2

|y−ŷ|
max(0,|y−ŷ|−ε)

Regression problem

I Objective: predict a real value.

I Error if y 6= ŷ.

I Error measure: |y − ŷ|
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Data fitting for classification

Cost L(y, ŷ) Smooth. Cvx.

0-1 loss (1− sgn(yŷ))/2 - -
Hinge max(0, 1− yŷ) - X
Squared Hinge max(0, 1− yŷ)2 X X
Logistic log(1 + exp(−yŷ)) X X
Sigmoid (1− tanh(yŷ))/2 X -
Perceptron max(0,−yŷ) - X

2 1 0 1
yŷ

0

1

2

3

L
(y
,ŷ

)

Coûts de classification
Coût 0-1
Hinge
Hinge2

Logistique
Sigmoide
Perceptron

Regression problem

I Objective: predict a binary value.

I Error when y 6= signe(ŷ) i.e. if y and ŷ
have a different sign.

I Error measure: yŷ

I Non symmetric loss.
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Maximum Likelihood

Maximum likelihood estimation

I pθ is a probability distribution in Rd.

I We have access to samples xi drawn I.I.D. from the distribution.

I The likelihood for independent samples can be expressed as

∏

i

pθ(xi)

I The maximum likelihood estimator of θ

θ̂ = arg max
θ

∏

i

pθ(xi)

I In practice one can minimize the negative log-likelihood

θ̂ = arg min
θ
−
∑

i

log(pθ(xi))

That is a special case of empirical risk minimization (least square, logistic
regression).
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Sparsity and variable selection

Variable selection

I In supervised learning variable section aim at finding a subset I ∈ {1, . . . , n} of
all variables that leads to a good prediction.

I It is a combinatorial problem w.r.t. the number of variables n.

I There is a compromise between number of variables and performance.

Sparsity and linear model

For a linear model the sparsity prior can be expressed as two optimization problems

min
x

L(Hx,y) + λ‖x‖0 or min
x,‖x‖0≤τ

L(Hx,y)

I λ ≥ 0 and τ ≥ 0 are regularization parameters.

I ‖x‖0 =
∑
i 1|xi|>0 is the number of components in x.

I The problem can be reformulated as a Mixed Integer Program.

I Often a continuous approximation of the problem is solved (Lasso).
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Lasso estimator

min
x

1

2
‖Hx− y‖2 + λ

d∑

k=1

|xk| (16)

Optimization problem

I ‖x‖1 =
∑d
k=1 |xk| is the L1 norm of vector w.

I Objective function is non differentiable in xk = 0, ∀k.

I For a large enough λ the solution of the problem is sparse.

I The problem is equivalent to

min
x,‖x‖1≤µ

1

2
‖Hx− y‖2 (17)

I.e. there exists a µ that leads to the same solution of the problem for a given λ.
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K-means clustering

I Non convex Optimization problem:

min
x̄k,∀k

N∑

i=1

min
k
‖x̄k − xi‖2

I Very simple algorithm :

1. Update cluster membership (find closest x̄k for each samples)
2. Update cluster positions x̄k as mean of all cluster members.

I Decrease the objective value at each iteration (can be formulated as block
coordinate descent).
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Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]

min
G

max
D

Ex∼µd [logD(x)] + Ez∼N (0,I)[log(1−D(G(z)))]

I Learn a generative model G that outputs realistic samples from data µd.

I Learn a classifier D to discriminate between the generated and true samples.

I Make those models compete (Nash equilibrium [Zhao et al., 2016]).

I Generator space has semantic meaning [Radford et al., 2015].
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Conclusion

Machine learning and optimization

I Learning is an optimization problem.

I Design a new machine learning method ≡ design a new optimization problem.

I Convexity, smoothness lead to specific solver and guarantees.

Know your optimization problems

I If convex and/or standard problems (LP,QP) → standard solvers, interior point.

I If smooth and unconstrained → Gradient descent and variants.

I If non-smooth → proximal, projected, conditional gradients.

Those are the next three parts of the course.
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Bibliography I

References books for the whole course.

Convex Optimization [Boyd and Vandenberghe, 2004]

I Available freely online: https://web.stanford.edu/~boyd/cvxbook/.

I Perfect introduction to convex optimization (the whole book).

I Convex sets (Ch. 2), Convex functions (Ch 3), Convex problems (Ch. 4).

Elements of statistical learning [Friedman et al., 2001]

I Freely available https://web.stanford.edu/~hastie/Papers/ESLII.pdf

I Perfect introduction to statistical learning and machine learning.

I Most of them are optimization problems!

Nonlinear Programming [Bertsekas, 1997]

I Reference optimization book, contains also most of the course.

I Unconstrained optimization (Ch. 1), duality and lagrangian (Ch. 3, 4 ,5).
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Bibliography II
Other references

Convex analysis and monotone operator theory in Hilbert spaces
[Bauschke et al., 2011]

I Awesome book with lot’s of algorithms, and convergence proofs.

I All definitions (convexity, lower semi continuity) in specific chapters.

I All you need to know about proximal methods.

Numerical optimization [Nocedal and Wright, 2006]

I Classic introduction to numerical optimization.

I Very detailed unconstrained optimization, specific chapters for LP and QP.

Optimization for Machine Learning [Sra et al., 2012]

I Specific chapters for precise problems (non-convex, sparsity, interior points)

I For this course: Convex with sparsity (Ch. 2), Interior points (Ch. 3).

Linear Programming [Vanderbei et al., 2015]

I Reference book of LP (Simplex, interior point)
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