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Introduction



Machine learning / Statistical learning / Al

THIS 15 YOUR MACHINE LEPRNING SYSTETT?

YUP! YaU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN (DLLECT
THE ANSLERS ON THE CTHER SIDE.

WHAT IF THE ANSLERS ARE LWJRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

e o —

WOW —RESEARCHERS TAUGHT A COMPUTER
TO BEAT THE WORLD'S BEST HUMANS AT
YET ANOTHER TASK. DOES OUR SPECEES
HAVE AWTHIVG LEFT TO BE PROUD OF?

( WELL, IT SOUNDS LIKE WERE

PRETTY AWESOME AT TEACHING.

HUH? \WJHAT \
GOOD 16 THAT?

O

https://xkcd.com
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Three aspects of Machine Learning
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Unsupervised learning
e Extract information from unlabeled data
£
.3 \t
R . S /
N L :4
gt T

e Find labels (clustering) or subspaces/manifolds.

e Generate realistic data (GAN).
Supervised Learning
e Learning to predict from labeld dataset.

e Regression, Classification.
e Can use unsupervised information (DA, Semi-sup.)

Reinforcement Learning
e Let the machine experiment.
SCORE: 0

e Learn from its mistakes.
e Framework for learning to play games.
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Optimal transport for machine learni

Occurences of OT+ML in Google Scholar

500 -
WGAN : Arjovski et al.
400 A
Sinkhorn : Cutur
300 A
EMD : Rubner et al.
200 A
100 -

1990 1995 2000 2005 2010 2015

Short history of OT for ML

e Recently introduced to ML (well known in image processing since 2000s).
e Computationnal OT allow numerous applications (regularization).

e Deep learning boost (numerical optimization and GAN).
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Three aspects of optimal transport

Transporting with optimal transport

e Color adaptation in image [Ferradans et al., 2014].
e Domain adaptation [Courty et al., 2016].

e OT mapping estimation [Perrot et al., 2016].

Divergence between histograms

Ot dintion 5 e Use the ground metric to encode complex relations
2 .
between the bins.

e Loss for multilabel classifier [Frogner et al., 2015]

o Loss for spectral unmixing [Flamary et al., 2016b].

. Divergence between empirical distributions
b
# ‘% e Non parametric divergence between non overlapping
/4 R\
/ % % distributions.
;,ﬁ, 5“ e Objective function for GAN [Arjovsky et al., 2017].
{v 3 ~..? ) ] y
T Rans -.in S S

e Estimate discriminant subspace [Flamary et al., 2016a].
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Mapping with optimal
transport



Mapping with optimal transport
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Mapping estimation

e Mapping do not exist in general between empirical distributions.

e Barycentric mapping [Ferradans et al., 2014].

e Smooth mapping estimation [Perrot et al., 2016, Seguy et al., 2017].
Why map ?

e Sensible displacement to align distributions.

e Color adaptation in image [Ferradans et al., 2014].

e Domain adaptation and transfer learning [Courty et al., 2016].
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Transporting the discrete samples
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Barycentric mapping [Ferradans et al., 2014]

Ty, (%) = argmin 370 (i, f)e(x,%)- (1)

J

The mass of each source sample is spread onto the target samples (line of ).

The mapping is the barycenter of the target samples weighted by «,,

Closed form solution for the quadratic loss.

e Limited to the samples in the distribution (no out of sample).

e Trick: learn OT on few samples and apply displacement to the nearest point. 8/39



Transporting the discrete samples
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Barycentric mapping [Ferradans et al., 2014]
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The mass of each source sample is spread onto the target samples (line of ).

The mapping is the barycenter of the target samples weighted by «,,
e Closed form solution for the quadratic loss.
e Limited to the samples in the distribution (no out of sample).

e Trick: learn OT on few samples and apply displacement to the nearest point. /39



Transporting the discrete samples
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Transporting the discrete samples

Distributions Classic OT (LP) Reg. Entropic OT
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Barycentric mapping [Ferradans et al., 2014]

~
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e The mass of each source sample is spread onto the target samples (line of ~,).

The mapping is the barycenter of the target samples weighted by «,,

Closed form solution for the quadratic loss.

e Limited to the samples in the distribution (no out of sample).

Trick: learn OT on few samples and apply displacement to the nearest point.
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Histogram matching in images

Pixels as empirical distribution [Ferradans et al., 2014]
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Histogram matching in images

Image colorization [Ferradans et al., 2014]

Original X?

B
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=
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Proposed method




Joint OT and mapping estimation

2D Dataset Barycentric displacement T displacement Out of sample T'

Linear mapping
&5
+
%

=3
+ + Source samples
X X _Target samples

Simultaneous OT matrix and mapping [Perrot et al., 2016]

m
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Nonlinear mapping

min (v, C)p + Y IT(x3) = T (x)II* + AT

T,~YEP

Estimate jointly the OT matrix and a smooth mapping approximating the
barycentric mapping.

The mapping is a regularization for OT.

Controlled generalization error (statistical bound).

Linear and kernel mappings T, limited to small scale datasets. 10/39



Large scale optimal transport and mapping estimation
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Large scale mapping estimation [Seguy et al., 2017]
e 2-step procedure:

1 Stochastic estimation of regularized .
2 Stochastic estimation of f with a neural

e OT solved with Stochastic Gradient Ascent in the dual.

e Convergence to the true OT and mapping for small

regularization.
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main Adaptation problem

oLsA
7 : W
Feature extraction l Feature extraction l

ility Distributi i over the d
Our context
e Classification problem with data coming from different sources (domains).
e Distributions are different but related.
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Unsupervised domain adaptation problem

Amazon

)
*,:’ ;‘ coo
@O O
Feamreexnamionl + Labels Feature extraction l no |abe|s |

ah A

Source Domain Target Domain

Problems
e Labels only available in the source domain, and classification is conducted in the
target domain.

o Classifier trained on the source domain data performs badly in the target domain
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OT for domain adaptation : Step 1

Dataset Optimal transport Classification on transported samples

Samples T, (x})

Classifier onx; — Classifier on T, (x5)

Step 1 : Estimate optimal transport between distributions.
e Choose the ground metric (squared euclidean in our experiments).
e Using regularization allows

e Large scale and regular OT with entropic regularization [Cuturi, 2013].
e Class labels in the transport with group lasso [Courty et al., 2016].

e Efficient optimization based on Bregman projections [Benamou et al., 2015] and

e Majoration minimization for non-convex group lasso.
e Generalized Conditionnal gradient for general regularization (cvx. lasso,
Laplacian).
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OT for domain adaptation : Steps 2 & 3

Dataset Optimal transport Classification on transported samples

+0 Samples T, (x;
403 Samples x!

—— Classifier onx; — Classifier on T, (x5)

Step 2 : Transport the training samples onto the target distribution.

e The mass of each source sample is spread onto the target samples (line of ).
e Transport using barycentric mapping [Ferradans et al., 2014].
e The mapping can be estimated for out of sample prediction
[Perrot et al., 2016, Seguy et al., 2017].
Step 3 : Learn a classifier on the transported training samples
e Transported sample keep their labels.

e Classic ML problem when samples are well transported.
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Visual adaptation datasets

PIEOS PIEO7 PIE0Y PIE29 Calltech Amazon DSLR Webcam
m
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Datasets

e Digit recognition, MNIST VS USPS (10 classes, d=256, 2 dom.).
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e Face recognition, PIE Dataset (68 classes, d=1024, 4 dom.).

e Object recognition, Caltech-Office dataset (10 classes, d=800/4096, 4 dom.).
Numerical experiments

e State of the art performances on the 3 datasets.

e Works well on deep features adaptation and extension to semi-supervised DA'16/39



Seamless copy in images

target

Poisson image editing [Pérez et al., 2003]

e Use the color gradient from the source image.
e Use color border conditions on the target image.

e Solve Poisson equation to reconstruct the new image.
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Seamless copy in images

source

Poisson image editing [Pérez et al., 2003]

e Use the color gradient from the source image.
e Use color border conditions on the target image.

e Solve Poisson equation to reconstruct the new image.

Seamless copy with gradient adaptation [Perrot et al., 2016]

e Transport the gradient from the source to target color gradient distribution.
e Solve the Poisson equation with the mapped source gradients.

e Better respect of the color dynamic and limits false colors. 17/39



Seamless copy in images

[rerez o3

Poisson image editing [Pérez et al., 2003]

e Use the color gradient from the source image.
e Use color border conditions on the target image.

e Solve Poisson equation to reconstruct the new image.

Seamless copy with gradient adaptation [Perrot et al., 2016]

e Transport the gradient from the source to target color gradient distribution.
e Solve the Poisson equation with the mapped source gradients.
e Better respect of the color dynamic and limits false colors.
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Seamless copy with gradient adaptation



https://github.com/ncourty/PoissonGradient

Learning from histograms with
Optimal Transport




Learning from histograms

Distributions

images cature

= | C]qgsification

sparse '

sm learnin
linear pFOblem task g .

method

allows vector

Data as histograms

e Fixed bin positions x; e.g. grid, simplex A = {(pi)i > 0;>, i = 1}
e A lot of datasets comes under the form of histograms.

e Images are photo counts (black and white), text as word counts.

Natural divergence is Kullback—Leibler.

Not all data can be seen as histograms (positivity+constant mass)!
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Dictionary learning on histograms

Data samples Data samples
0.1 0.1
—21 _298
0.08 —by 0.08 —bioo
0.06 0.06
0.04 1 0.04
0.02 0.02
0 -6 0 6 0 -6 0 6

DL with Wasserstein distance [Sandler and Lindenbaum, 2011]
%1’1511 Z Wec(vi, Dh;)

e NMF: columns of D and H are on the simplex.

Metric C can encode spatial relations btewwen the bins of the histograms.

Ground metric learning [Zen et al., 2014].

Fast DL with regularized OT [Rolet et al., 2016].
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Dictionary learning on histograms

0.1
0.08
0.06
0.04
0.02

0

Wasserstein NMF 01 KL NMF
—_— ] ' —_—
—as 0.08 —as
%3l 0.08 s
0.04
AN Y/VAY
— . 0 ) ri
-6 0 6 -6 0 6

DL with Wasserstein distance [Sandler and Lindenbaum, 2011]

D.H

min Z We(vi, Dhy)

NMF: columns of D and H are on the simplex.

Metric C can encode spatial relations btewwen the bins of the histograms.

Ground metric learning [Zen et al., 2014].

Fast DL with regularized OT [Rolet et al., 2016].
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Euclidean Simplex: {Z?:l AiDi, A € 23} Wasserstein simplex: { P(\), A € X3}

Nonlinear unmixing with Wasserstein simplex [Schmitz et al., 2017]

e Linear model is a barycenter for the squared /5 distance.
e Use Wassersyein barycenter for modeling.
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ng Restricted Boltzm

Model 1
B )

v,
\ A, D)
large overlap KL(j ” o) low

large distance o
L W(p,pa) high

Model 2
m por(x)
/ ~ small +— — v large

A [

small overla N A 4 - 3
\\.—p>KL(;n||m-)high o3| € || & 5|
small distance - - J J
WP, por) low

b g g

Wasserstein training of RBM [Montavon et al., 2016]

e Use Wassersteien instead of KL for training RBM.
e Estimation of RBM generative models po(x).

e Used for completion or denoising.
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Multi-label learning with Wasserstein

rian husky

;.\'”,

s Flickr : street, parade, dragon Flickr : water, boat, ref ection, sun-shine
Eskimo dog Prediction : people, protest, parade Prediction : water, river, lake, summer;

Learning with a Wasserstein Loss [Frogner et al., 2015]
N
min Y Wi (f(x:), 1)
k=1

e Empirical loss minimization with Wasserstein loss.

e Multi-label prediction (labels 1 seen as histograms, f output softmax).

Cost between labels can encode semantic similarity between classes.

Good performances in image tagging. 23 /39



Linear unmixing with optimal t

Linear unmixing
min  Wg(v,Dh) (2)
heA

A is the probability simplex (positivity, sum to one).

v is the observation, D the dictionary, h the mixing coefficients.

Supervised when the dictionary is known designed.

Classical problem in remote sensing, signal processing.

Musical spectral unmixing
e State of the art: KL + designed dictionary.

(MIDI)
3
-

e Spectra with harmonic structure.
6000

e Variability in the fundamental frequency. 4000

(Hz)

2000

e Variability in the magnitude of the harmonics.
0

= Optimal spectral transportation [Flamary et al., 2016b].
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Linear unmixing with optimal t

Linear unmixing
min  Weg(v,Dh) (2)
heA

A is the probability simplex (positivity, sum to one).

v is the observation, D the dictionary, h the mixing coefficients.

Supervised when the dictionary is known designed.

Classical problem in remote sensing, signal processing.

Musical spectral unmixing
e State of the art: KL + designed dictionary.

T
Qs WN R

sao0o00aa0

e Spectra with harmonic structure. 8

e Variability in the fundamental frequency.

e Variability in the magnitude of the harmonics. -

0.0 05 1.0 15 25 3.0 35 2.0

2.0
Time (s)

= Optimal spectral transportation [Flamary et al., 2016b].
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Optimal spectral transportation (OST)

Quadratic cost C (log) Quadratic cost between frequencies

e Allows small shift in frequencies.
e Very sensitive to harmonics magnitude.

Harmonic invariant cost )
cij = min (fi —qf;)" +€dgz1,

e Allow mass transfer between harmonics.
e ¢ > (0 discriminates between octaves.
Solving the optimization problem
e A good invariant cost allows for extremely simple dictionary elements (diracs on
the fundamental frequency).
e We take D as diracs on the fundamental frequencies of the notes.
e Closed form for solving the OT problem.

e Non-convex Group lasso for sparse estimates and/or entropic regularization.
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Optimal spectral transportation (OST)

Harmonic cost C (log) Quadratic cost between frequencies

e Allows small shift in frequencies.
e Very sensitive to harmonics magnitude.

Harmonic invariant cost )
cij = min (fi —qf;)" +€dgz1,

e Allow mass transfer between harmonics.
e ¢ > (0 discriminates between octaves.
Solving the optimization problem
e A good invariant cost allows for extremely simple dictionary elements (diracs on
the fundamental frequency).
e We take D as diracs on the fundamental frequencies of the notes.
e Closed form for solving the OT problem.

e Non-convex Group lasso for sparse estimates and/or entropic regularization.
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OST in action

Simulated data

Elements of the dictionary W

e Robust to shifted fundamental frequency.

wn
MR A 4 A AR .
e Robust to harmonics magnitude variability. J“J’« \ j%x,‘]%% I A

Observed sample (shifted fundamental)

——Observed sample
/\\ A —— Theoretical sample

LN

e Very fast (~ms per frame).

MAPS Dataset [Emiya et al., 2010]

Observed sample (modified harmonic amplitudes)

e Several piano sequence from classical music /\
(m = 60 notes) N\ /\/\/\ A

e Comparison with ground truth given as MIDI.

80 —— —_—
e OST similar of better than KL+Dico while o = =—— _
= — _—
> 70 times quicker. o =
0 1 2 3 4 5
Real time demonstration 5000
& 4000
e Python+Pygame implementation. = 000
ok

e https://github.com/rflamary/0ST



https://github.com/rflamary/OST

Learning from empirical
distributions with Optimal
Transport




Empirical distributions A.K.A datasets

n= zn:,uﬁx“ x; € Q, Zui =1
i—1 i=1

Empirical distribution

e Two realizations never overlap.

e Training base of all machine learning o.....$
approaches. 00 ® a 0
Qup 0 .Xi
e How to measure discrepancy? .8 °g
e Maximum Mean Discrepancy ({2 after w
convolution).
Q

e Wasserstein distance.
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Generative Adversarial Networks (GAN)

i

- ‘-‘__‘"

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]
minmax  Exeu,llog D(x)] + Ex(onlog(l ~ D(G(2)))

e Learn a generative model G that outputs realistic samples from data 4.

Learn a classifier D to discriminate between the generated and true samples.

Make those models compete (Nash equilibrium [Zhao et al., 2016]).

e Generator space has semantic meaning [Radford et al., 2015].

But extremely hard to train (vanishing gradients).
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Generative Adversarial Networks (GAN)

man man woman

with glasses without glasses without glasses woman with glasses

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]

minmax  Exeu,llog D(x)] + Eeuxonlog(l ~ D(G(2)))

Learn a generative model G that outputs realistic samples from data pq.

Learn a classifier D to discriminate between the generated and true samples.

Make those models compete (Nash equilibrium [Zhao et al., 2016]).
e Generator space has semantic meaning [Radford et al., 2015].

e But extremely hard to train (vanishing gradients). 28/39



Wasserstein Generative Adversarial Networks (WGAN)

10 35
\ — Density of real — MLP_512
08 Density of fake 3.0
\ — GAN Discriminator
——  WGAN Critic o
06 8
\ £
0.4 :
/\ ) 5
02 [4
| 4
P . 8
00 i e
-02 Vanishing gradients
in regular GAN
0.0
04 s pry = o) 7 n 3 0 100000 200000 300000 400000 500000 600000

Generator iterations

Wasserstein GAN [Arjovsky et al., 2017]
mgn Wi (G(2), pa), st z~N(0,1) (3)
e Minimizes the Wasserstein distance between the data and the generated data.

No vanishing gradients ! Far better convergence in practice.

e Wasserstein in the dual (separable w.r.t. the samples).
min sup  Exvpy[¢(x)] — Eznvon [¢(G(2))]
G gelLipt

e ¢ is a neural network that acts as an actor critic
29 /39



WGAN: the devil in the approximation

Neural network belonging to Lip* ?

e Not really! [Arjovsky et al., 2017] proposes to do weight clipping that force an
upper bound on the Lipschitz constant.

e |t is actually the supremum over K-Lipschitz functions that is approximated by a

neural network

max  Lwean(f,G) < sup  Lwgan($,G) = K- -Wi(G(2),1a)
FENN class ol <K

e Actually not equivalent to solve the optimal transport, but gradients are aligned.

Improved WGAN [Gulrajani et al., 2017]

min op By /()] ~ Buno.0 [ (G)] + Ay (197632 = 1))

Relaxation of the constraint (for W, the gradient of the potential is 1 almost

everywhere).
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Wasserstein Discriminant Analysis (WDA)

Original space Optimal projected space

x 3% 5 < A X

-1 > % xxﬁ‘ % B

AR R

* -~ X
-2 _'1 6 1 2
Do s WA(PXC PXC') e X¢ are samples from class c.
max Ge e ’ 4

PeS > WA (PXe, PX¢) e P is an orthogonal projection;

e Converges to Fisher Discriminant when A — oo.
e Non parametric method that allows nonlinear discrimination.

Problem solved with gradient ascent in the Stiefel manifold S.

Gradient computed using automatic differentiation of Sinkhorn algorithm.
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Wasserstein Discriminant Analysis (WDA)

Original space Optimal projected space
N
N
2
1 14
0
-1 01
-2 14
5
3
-3 -2 -1 0 1 2 3
D Wi (PX° PXC/) e X€ are samples from class c.
max ce>e T ’
pPes > Wi (PXe, PXe) e P is an orthogonal projection;

e Converges to Fisher Discriminant when A — oo.
e Non parametric method that allows nonlinear discrimination.
e Problem solved with gradient ascent in the Stiefel manifold S.

e Gradient computed using automatic differentiation of Sinkhorn algorithm.
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WDA in action

Simulated datasets : 10—2

Example 1 : projected test samples Example 2 : projected test samples
4

-2

-3 -4

MNIST Dataset: 784—10(—2 TSNE)
FDA LFDA LMNN

L s ]
- & ?
v

[ 4 . > - - L]
.« » s ®

Train data

L™

>

Test data




ain adaptation with Wasserstein distance

Feature Extractor Discriminator

SSOT
UOTIEDTJISSeD)

B
19818,
0UEISI([
UI2)SISSEM

Domain Critic (d) t-SNE of WDGRL features

Domain adaptation for deep learning [Shen et al., 2018]

e Modern DA aim at aligning source and target in the deep representation :

DANN [Ganin et al., 2016], MMD [Tzeng et al., 2014], CORAL [Sun and Saenko, 2016].

e Wasserstein distance used as objective for the adaptation [Shen et al., 2018].
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Joint Distribution Optimal Transport for DA

Learning with JDOT [Courty et al., 2017]

min {Wl(ﬁs7ﬁtf) = inf D(xf,yf;xj-,f(xé))’yij} (5)
f ~EII r

75tf = N% vaztl Oyt st is the proxy joint feature/label distribution.

IT is the transport polytope, P, the empirical source distribution.

D(x;,y73 x5, f(x))) = allx] = x5|1* + L(y7, £(x5)) with o> 0.

e \We search for the predictor f that better align the joint distributions.

e JDOT can be seen as minimizing a generalization bound.
Optimizing JDOT

e Can be solved by block coordinate descent (f,~) [Courty et al., 2017].
e Solving with fixed f is classical OT.

e Solving with fixed ~ is weighted empirical loss minimization.
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JDOT in action

Toy regression distributions Toy regression models Joint OT matrices Model estimated with JDOT
10 1.0 1.0 1.0
° °
0.5 0.5 05 0.5
0.0
> o 0.0 0.0 o 0.0
-0.5 °
o
-1.0 -0.5 ~— Source model [=0.5 -0.5
8 Target model o ~—— Source model
-15 ° ® Source samples ° JDOT matrix link o Target model
y 7y -10 © Target samples |~1.0 === OT matrix link  [-1.0 —— JDOT model
-5 0 5 -25 00 25 5.0 -25 00 25 50 -25 00 25 5.0

X X X x

Numerical experiments

e Examples on toy regression and classification problems.

e State of the art in Visual adaptation (Caltech/office), review score prediction

(Amazon) and Wifi localization.

Works very well but limited to small datasets.

OT performed with euclidean distance in the feature space.
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JDOT in action

Accuracy along BCD iterations

Linear Kernel

RBF Kernel

Numerical experiments

Examples on toy regression and classification problems.

State of the art in Visual adaptation (Caltech/office), review score prediction

(Amazon) and Wifi localization.

Works very well but limited to small datasets.

OT performed with euclidean distance in the feature space.
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JDOT in action

Excellent product that I completely hate, Apr 1, 2013
- See all my reviews
7R\
is from: Strollmaster 3000 (Baby Product] ((9)
\\\ )

Calltech Amazon DSLR Webcam

()

The Strollmaster 3000 is every parent's dream - roomy, durable, safe, and easy to Fix beacon 3
fold, with a unique 17-point harness. Best yet, it weighs just 1.6 Ibs. and sells for
an unbelievable $17.99. Unfortunately, it has one fatal flaw - the cupholder can
only handle beverages up to 64 0z. I was dumbstruck as well. Is this America? I
was left holding my 128 oz. Big Guip lie some kind of sucker. So, if you're into
amazing, durable products that are a steal and virtually idyllic, then, sure, buy it
If you want to down a bathtub of Dr. Pepper, though. I'd pass.

Letit go...in the trash .

Fix beacon 2

By VPI1977 on Decs 4,207
Had high expectation, too much snow, too many. 7 N\ Mobile
animas, wish it had more ninjas. Also it would be: (D))l device
better f these people ate more, | mean how are we N
suppose to make society better if people don't sit
down to eat and sociaize.

Fix beacon 1

Numerical experiments

e Examples on toy regression and classification problems.

e State of the art in Visual adaptation (Caltech/office), review score prediction
(Amazon) and Wifi localization.

e Works very well but limited to small datasets.

e OT performed with euclidean distance in the feature space.
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JDOT for large scale deep learning

Loss (9):
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DeepJDOT [Damodaran et al., 2018]

e Learn simultaneously the embedding g and the classifier f.

JDOT performed in the joint embedding/label space.

Use minibatch to estimate OT and update g, f at each iterations.
Scales to large datasets and estimate a representation for both domains.

e TSNE projections of embeddings (MNIST—MNIST-M).
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e Learn simultaneously the embedding g and the classifier f.
e JDOT performed in the joint embedding/label space.

e Use minibatch to estimate OT and update g, f at each iterations.

Scales to large datasets and estimate a representation for both domains.

TSNE projections of embeddings (MNIST—MNIST-M).
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Conclusion




Optimal transport for machine learning

Mapping with optimal transport
e Optimal displacement from one distribution to another.

e Can estimate smooth mapping for out of sample
displacement.

e Domain, color and gradient adaptation, transfer

learning.

OT matrix y

m Learning with optimal transport

e Natural divergence for machine learning and estimation.

= oy
| e Cost encode complex relations in an histogram.
e Regularization is the key (performance, smoothness).
‘ﬁi‘ e Recent optimization procedures opened it to
/f f%\ medium/large scale datasets.
// % } \V e Sensible loss between non overlapping distributions.
Lﬁf_’*},}tﬂjﬁ- e Works with both histograms and empirical distributions.
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Optimal transport for machine learning

Linear Kernel

RBF Kernel

Open questions
e Generalization bounds for learning with OT.
o Concentration inequalities of regularized OT.
e Learning the ground metric (supervised, unsupervised, adversarial?).

e Large scale OT and mapping estimation, accelerated stochastic optimization.
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Python code available on GitHub:
https://github.com/rflamary/POT

o®

(=]
e OT LP solver, Sinkhorn (stabilized, e—scaling, GPU) %R
e Domain adaptation with OT.
e Barycenters, Wasserstein unmixing.

e Wasserstein Discriminant Analysis.

=

Papers available on my website: /
https://remi.flamary.com/
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