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Introduction



Machine learning / Statistical learning / AI

https://xkcd.com
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Three aspects of Machine Learning

Unsupervised learning

• Extract information from unlabeled data

• Find labels (clustering) or subspaces/manifolds.

• Generate realistic data (GAN).

Supervised Learning

• Learning to predict from labeld dataset.

• Regression, Classification.

• Can use unsupervised information (DA, Semi-sup.)

Reinforcement Learning

• Let the machine experiment.

• Learn from its mistakes.

• Framework for learning to play games.

Slide stolen from Yann Lecun

3 / 39



Optimal transport for machine learning
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Occurences of OT+ML in Google Scholar

Short history of OT for ML

• Recently introduced to ML (well known in image processing since 2000s).

• Computationnal OT allow numerous applications (regularization).

• Deep learning boost (numerical optimization and GAN).
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Three aspects of optimal transport

Transporting with optimal transport

• Color adaptation in image [Ferradans et al., 2014].

• Domain adaptation [Courty et al., 2016].

• OT mapping estimation [Perrot et al., 2016].
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Divergence between histograms

• Use the ground metric to encode complex relations

between the bins.

• Loss for multilabel classifier [Frogner et al., 2015]

• Loss for spectral unmixing [Flamary et al., 2016b].

Divergence between empirical distributions

• Non parametric divergence between non overlapping

distributions.

• Objective function for GAN [Arjovsky et al., 2017].

• Estimate discriminant subspace [Flamary et al., 2016a].
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Mapping with optimal transport
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Mapping estimation

• Mapping do not exist in general between empirical distributions.

• Barycentric mapping [Ferradans et al., 2014].

• Smooth mapping estimation [Perrot et al., 2016, Seguy et al., 2017].

Why map ?

• Sensible displacement to align distributions.

• Color adaptation in image [Ferradans et al., 2014].

• Domain adaptation and transfer learning [Courty et al., 2016]. 7 / 39



Transporting the discrete samples

Distributions

Source s

Target t

Classt OT Reg. Entropic OT

Barycentric mapping [Ferradans et al., 2014]

T̂γ0
(xsi ) = arg min

x

∑
j

γ0(i, j)c(x,xtj). (1)

• The mass of each source sample is spread onto the target samples (line of γ0).

• The mapping is the barycenter of the target samples weighted by γ0

• Closed form solution for the quadratic loss.

• Limited to the samples in the distribution (no out of sample).

• Trick: learn OT on few samples and apply displacement to the nearest point.
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Histogram matching in images

Pixels as empirical distribution [Ferradans et al., 2014]
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Histogram matching in images

Image colorization [Ferradans et al., 2014]
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Joint OT and mapping estimation
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Barycentric displacement T displacement Out of sample T

Simultaneous OT matrix and mapping [Perrot et al., 2016]

min
T,γ∈P

〈γ,C〉F +
∑
i

‖T (xsi )− Tγ(xsi )‖2 + λ‖T‖2

• Estimate jointly the OT matrix and a smooth mapping approximating the

barycentric mapping.

• The mapping is a regularization for OT.

• Controlled generalization error (statistical bound).

• Linear and kernel mappings T , limited to small scale datasets. 10 / 39



Large scale optimal transport and mapping estimation
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Large scale mapping estimation [Seguy et al., 2017]

• 2-step procedure:

1 Stochastic estimation of regularized γ̂.

2 Stochastic estimation of f with a neural

• OT solved with Stochastic Gradient Ascent in the dual.

• Convergence to the true OT and mapping for small

regularization.
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Domain Adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains

Our context

• Classification problem with data coming from different sources (domains).

• Distributions are different but related.
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Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

• Labels only available in the source domain, and classification is conducted in the

target domain.

• Classifier trained on the source domain data performs badly in the target domain
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OT for domain adaptation : Step 1
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Step 1 : Estimate optimal transport between distributions.

• Choose the ground metric (squared euclidean in our experiments).

• Using regularization allows

• Large scale and regular OT with entropic regularization [Cuturi, 2013].

• Class labels in the transport with group lasso [Courty et al., 2016].

• Efficient optimization based on Bregman projections [Benamou et al., 2015] and

• Majoration minimization for non-convex group lasso.

• Generalized Conditionnal gradient for general regularization (cvx. lasso,

Laplacian).
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OT for domain adaptation : Steps 2 & 3

Dataset 

Class 1

Class 2

Samples 

Samples 

Classifier on 

Optimal transport 

Samples 

Samples 

Classification on transported samples

Samples 

Samples 

Classifier on 

Step 2 : Transport the training samples onto the target distribution.

• The mass of each source sample is spread onto the target samples (line of γ0).

• Transport using barycentric mapping [Ferradans et al., 2014].

• The mapping can be estimated for out of sample prediction

[Perrot et al., 2016, Seguy et al., 2017].

Step 3 : Learn a classifier on the transported training samples

• Transported sample keep their labels.

• Classic ML problem when samples are well transported.
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Visual adaptation datasets

Datasets

• Digit recognition, MNIST VS USPS (10 classes, d=256, 2 dom.).

• Face recognition, PIE Dataset (68 classes, d=1024, 4 dom.).

• Object recognition, Caltech-Office dataset (10 classes, d=800/4096, 4 dom.).

Numerical experiments

• State of the art performances on the 3 datasets.

• Works well on deep features adaptation and extension to semi-supervised DA.
16 / 39



Seamless copy in images

Poisson image editing [Pérez et al., 2003]

• Use the color gradient from the source image.

• Use color border conditions on the target image.

• Solve Poisson equation to reconstruct the new image.

Seamless copy with gradient adaptation [Perrot et al., 2016]

• Transport the gradient from the source to target color gradient distribution.

• Solve the Poisson equation with the mapped source gradients.

• Better respect of the color dynamic and limits false colors.
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Seamless copy with gradient adaptation

Example and webcam demo: https://github.com/ncourty/PoissonGradient

18 / 39
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Learning from histograms

Data as histograms

• Fixed bin positions xi e.g. grid, simplex ∆ =
{

(µi)i ≥ 0;
∑
i µi = 1

}
• A lot of datasets comes under the form of histograms.

• Images are photo counts (black and white), text as word counts.

• Natural divergence is Kullback–Leibler.

• Not all data can be seen as histograms (positivity+constant mass)!
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Dictionary learning on histograms

DL with Wasserstein distance [Sandler and Lindenbaum, 2011]

min
D,H

∑
i

WC(vi,Dhi)

• NMF: columns of D and H are on the simplex.

• Metric C can encode spatial relations btewwen the bins of the histograms.

• Ground metric learning [Zen et al., 2014].

• Fast DL with regularized OT [Rolet et al., 2016].
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Wasserstein dictionary learning

Nonlinear unmixing with Wasserstein simplex [Schmitz et al., 2017]

• Linear model is a barycenter for the squared `2 distance.

• Use Wassersyein barycenter for modeling.
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Training Restricted Boltzman Machine with Wasserstein

Wasserstein training of RBM [Montavon et al., 2016]

• Use Wassersteien instead of KL for training RBM.

• Estimation of RBM generative models pθ(x).

• Used for completion or denoising.
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Multi-label learning with Wasserstein Loss

Learning with a Wasserstein Loss [Frogner et al., 2015]

min
f

N∑
k=1

W 1
1 (f(xi), li)

• Empirical loss minimization with Wasserstein loss.

• Multi-label prediction (labels l seen as histograms, f output softmax).

• Cost between labels can encode semantic similarity between classes.

• Good performances in image tagging.
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Linear unmixing with optimal transport

Linear unmixing
min
h∈∆

WC(v,Dh) (2)

• ∆ is the probability simplex (positivity, sum to one).

• v is the observation, D the dictionary, h the mixing coefficients.

• Supervised when the dictionary is known designed.

• Classical problem in remote sensing, signal processing.

Musical spectral unmixing

• State of the art: KL + designed dictionary.

• Spectra with harmonic structure.

• Variability in the fundamental frequency.

• Variability in the magnitude of the harmonics.

⇒ Optimal spectral transportation [Flamary et al., 2016b].
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Optimal spectral transportation (OST)

Quadratic cost C (log) Quadratic cost between frequencies

• Allows small shift in frequencies.

• Very sensitive to harmonics magnitude.

Harmonic invariant cost
cij = min

q=1,...,

⌈
fi
fj

⌉(fi − qfj)2 + ε δq 6=1,

• Allow mass transfer between harmonics.

• ε > 0 discriminates between octaves.

Solving the optimization problem

• A good invariant cost allows for extremely simple dictionary elements (diracs on

the fundamental frequency).

• We take D as diracs on the fundamental frequencies of the notes.

• Closed form for solving the OT problem.

• Non-convex Group lasso for sparse estimates and/or entropic regularization.
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OST in action

Simulated data

• Robust to shifted fundamental frequency.

• Robust to harmonics magnitude variability.

• Very fast (∼ms per frame).

MAPS Dataset [Emiya et al., 2010]

• Several piano sequence from classical music

(m = 60 notes)

• Comparison with ground truth given as MIDI.

• OST similar of better than KL+Dico while

≥ 70 times quicker.

Real time demonstration

• Python+Pygame implementation.

• https://github.com/rflamary/OST

26 / 39
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Learning from empirical

distributions with Optimal

Transport



Empirical distributions A.K.A datasets

µ =

n∑
i=1

µiδxi , xi ∈ Ω,
n∑
i=1

µi = 1

Empirical distribution

• Two realizations never overlap.

• Training base of all machine learning

approaches.

• How to measure discrepancy?

• Maximum Mean Discrepancy (`2 after

convolution).

• Wasserstein distance.

xi
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Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]

min
G

max
D

Ex∼µd [logD(x)] + Ez∼N (0,I)[log(1−D(G(z)))]

• Learn a generative model G that outputs realistic samples from data µd.

• Learn a classifier D to discriminate between the generated and true samples.

• Make those models compete (Nash equilibrium [Zhao et al., 2016]).

• Generator space has semantic meaning [Radford et al., 2015].

• But extremely hard to train (vanishing gradients).
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Wasserstein Generative Adversarial Networks (WGAN)

Wasserstein GAN [Arjovsky et al., 2017]

min
G

W 1
1 (G(z), µd), s.t. z ∼ N (0, I) (3)

• Minimizes the Wasserstein distance between the data and the generated data.

• No vanishing gradients ! Far better convergence in practice.

• Wasserstein in the dual (separable w.r.t. the samples).

min
G

sup
φ∈Lip1

Ex∼µd [φ(x)]− Ez∼N (0,I)[φ(G(z))]

• φ is a neural network that acts as an actor critic
29 / 39



WGAN: the devil in the approximation

Neural network belonging to Lip1 ?

• Not really! [Arjovsky et al., 2017] proposes to do weight clipping that force an

upper bound on the Lipschitz constant.

• It is actually the supremum over K-Lipschitz functions that is approximated by a

neural network

max
f∈NN class

LWGAN (f,G) ≤ sup
‖φ‖L≤K

LWGAN (φ,G) = K ·W 1
1 (G(z), µd)

• Actually not equivalent to solve the optimal transport, but gradients are aligned.

Improved WGAN [Gulrajani et al., 2017]

min
G

sup
f∈NN class

Ex∼µd [f(x)]− Ez∼N (0,I)[f(G(z))] + λEx∼µd [(||∇f(x)||2 − 1)2]

Relaxation of the constraint (for W1 the gradient of the potential is 1 almost

everywhere).
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Wasserstein Discriminant Analysis (WDA)
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max
P∈S

∑
c,c′>cWλ(PXc,PXc′)∑

cWλ(PXc,PXc)
(4)

• Xc are samples from class c.

• P is an orthogonal projection;

• Converges to Fisher Discriminant when λ→∞.

• Non parametric method that allows nonlinear discrimination.

• Problem solved with gradient ascent in the Stiefel manifold S.

• Gradient computed using automatic differentiation of Sinkhorn algorithm.
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WDA in action

Simulated datasets : 10→2

MNIST Dataset: 784→10(→2 TSNE)
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Domain adaptation with Wasserstein distance

Domain adaptation for deep learning [Shen et al., 2018]

• Modern DA aim at aligning source and target in the deep representation :

DANN [Ganin et al., 2016], MMD [Tzeng et al., 2014], CORAL [Sun and Saenko, 2016].

• Wasserstein distance used as objective for the adaptation [Shen et al., 2018].
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Joint Distribution Optimal Transport for DA

Learning with JDOT [Courty et al., 2017]

min
f

{
W1(P̂s, P̂t

f
) = inf

γ∈Π

∑
ij

D(xsi , y
s
i ;x

t
j , f(xtj))γij

}
(5)

• P̂t
f

= 1
Nt

∑Nt
i=1 δxt

i,fx
t
i

is the proxy joint feature/label distribution.

• Π is the transport polytope, P̂s the empirical source distribution.

• D(xsi , y
s
i ;x

t
j , f(xtj)) = α‖xsi − xtj‖2 + L(ysi , f(xtj)) with α > 0.

• We search for the predictor f that better align the joint distributions.

• JDOT can be seen as minimizing a generalization bound.

Optimizing JDOT

• Can be solved by block coordinate descent (f,γ) [Courty et al., 2017].

• Solving with fixed f is classical OT.

• Solving with fixed γ is weighted empirical loss minimization.
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JDOT in action
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Numerical experiments

• Examples on toy regression and classification problems.

• State of the art in Visual adaptation (Caltech/office), review score prediction

(Amazon) and Wifi localization.

• Works very well but limited to small datasets.

• OT performed with euclidean distance in the feature space.
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JDOT in action
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JDOT for large scale deep learning

g

g

+

+

DeepJDOT [Damodaran et al., 2018]

• Learn simultaneously the embedding g and the classifier f .

• JDOT performed in the joint embedding/label space.

• Use minibatch to estimate OT and update g, f at each iterations.

• Scales to large datasets and estimate a representation for both domains.

• TSNE projections of embeddings (MNIST→MNIST-M).
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Conclusion



Optimal transport for machine learning

Mapping with optimal transport

• Optimal displacement from one distribution to another.

• Can estimate smooth mapping for out of sample

displacement.

• Domain, color and gradient adaptation, transfer

learning.

OT matrix                   
Learning with optimal transport

• Natural divergence for machine learning and estimation.

• Cost encode complex relations in an histogram.

• Regularization is the key (performance, smoothness).

• Recent optimization procedures opened it to

medium/large scale datasets.

• Sensible loss between non overlapping distributions.

• Works with both histograms and empirical distributions.
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Optimal transport for machine learning

Open questions

• Generalization bounds for learning with OT.

• Concentration inequalities of regularized OT.

• Learning the ground metric (supervised, unsupervised, adversarial?).

• Large scale OT and mapping estimation, accelerated stochastic optimization.
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Thank you

Python code available on GitHub:

https://github.com/rflamary/POT

• OT LP solver, Sinkhorn (stabilized, ε−scaling, GPU)

• Domain adaptation with OT.

• Barycenters, Wasserstein unmixing.

• Wasserstein Discriminant Analysis.

Papers available on my website:

https://remi.flamary.com/

Post docs available in:

Nice, Rouen, Rennes (France)

39 / 39

https://github.com/rflamary/POT
https://remi.flamary.com/


References I

Arjovsky, M., Chintala, S., and Bottou, L. (2017).

Wasserstein gan.

arXiv preprint arXiv:1701.07875.

Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and Peyré, G. (2015).
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