
Optimal transport for machine learning

Nicolas Courty1, Rémi Flamary2
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Overview of the class

Planning of the day:

• (Morning) 3h of introductory course to optimal transport and related applications
to machine learning

• 1h20: introduction to computational optimal transport (nicolas)

• small break

• 1h20: applications to machine learning problems (rémi)

• (Afternoon) 3h of practical sessions in Python
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Optimal transport : introduction



What is optimal transport ?

The natural geometry of probability measures
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The origins of optimal transport

Problem [Monge, 1781]

• How to move dirt from one place (déblais) to another (remblais) while minimizing

the effort ?

• Find a mapping T between the two distributions of mass (transport).

• Optimize with respect to a displacement cost c(x, y) (optimal).
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• How to move dirt from one place (déblais) to another (remblais) while minimizing

the effort ?

• Find a mapping T between the two distributions of mass (transport).

• Optimize with respect to a displacement cost c(x, y) (optimal).

5 / 51



Optimal transport (Monge formulation)
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• Probability measures µs and µt on and a cost function c : Ωs × Ωt → R+.

• The Monge formulation [Monge, 1781] aim at finding a mapping T : Ωs → Ωt

inf
T#µs=µt

∫
Ωs

c(x, T (x))µs(x)dx (1)
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What is T#µs = µt ?

xs

µt(T(xs))µs(x
s)

T(xs)⌦s ⌦t

• T# is the so called push forward operator

• it transfers measures from one space Ωs to another space Ωt

• it is equivalent to:

µt(A) = µs(T
−1(A))∫

Ωt

g(y)dµt(y) =

∫
Ωs

g(T (x))dµs(x)

• for smooth measures µs = ρ(x)dx and µt = η(x)dx

T#µs = µt ≡ ρ(T (x))|det(∂T (x))| = η(x)

• a.k.a. change of variable formula
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Non-existence / Non-uniqueness

Solving for this push-forward operator is a non-convex optimization problem,

• for which existence is not guaranteed,

• nor unicity

Note: [Brenier, 1991] proved existence and unicity of the Monge map for

c(x, y) = ‖x− y‖2 and distributions with densities (i.e. continuous).
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Kantorovich relaxation

• Leonid Kantorovich (1912–1986), Economy nobelist in 1975, proposed a different

formulation of the problem

• with applications mainly for ressource allocation problems
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Optimal transport (Kantorovich formulation)

y
x

Joint distribution (x, y) = s(x) t(y)

Source s(x)
Target t(y)
(x, y)

y
x

Transport cost c(x, y) = |x y|2

c(x, y)

• The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic

coupling γ ∈ P(Ωs × Ωt) between Ωs and Ωt:

γ0 = argmin
γ

∫
Ωs×Ωt

c(x,y)γ(x,y)dxdy, (2)

s.t. γ ∈ P =

{
γ ≥ 0,

∫
Ωt

γ(x,y)dy = µs,

∫
Ωs

γ(x,y)dx = µt

}
• γ is a joint probability measure with marginals µs and µt.

• Linear Program that always have a solution.
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The 3 ways of optimal transport

Image from Gabriel Peyré
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Couplings

Image from Gabriel Peyré
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Histogram matching in images : color grading

Pixels as empirical distribution [Ferradans et al., 2014]
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Histogram matching in images : color grading

Image colorization [Ferradans et al., 2014]
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Matching words embedding

• Words are embedded in a high-dimensional space with neural networks

• Matching two documents is an OT problem, with the cost being the l2 distance in

the embedded space
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Wasserstein distance

Source distribution

Target distributions

Divergences (scaled)
W1

1
W2

2
l1 (TV)
l2 (sq. eucl.)

Wasserstein distance

W p
p (µs, µt) = min

γ∈P

∫
Ωs×Ωt

c(x,y)γ(x,y)dxdy = E
(x,y)∼γ

[c(x,y)] (3)

where c(x,y) = ‖x− y‖p

• A.K.A. Earth Mover’s Distance (W 1
1 ) [Rubner et al., 2000].

• Do not need the distribution to have overlapping support.

• Works for continuous and discrete distributions (histograms, empirical).
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Discrete distributions: Empirical vs Histogram

Discrete measure: µ =

n∑
i=1

µiδxi , xi ∈ Ω,
n∑
i=1

µi = 1

Lagrangian (point clouds)

xi

• Constant weight: µi = 1
n

• Quotient space: Ωn, Σn

Eulerian (histograms)

• Fixed positions xi e.g. grid

• Convex polytope Σn (simplex):{
(µi)i ≥ 0;

∑
i µi = 1

}
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Wasserstein space

The space of probability distribution equipped with the Wasserstein metric (Pp(X),

W 2
2 (X)) defines a geodesic space with a Riemannian structure [Santambrogio, 2014].

• Geodesics are shortest curves on Pp(X) that link two distributions

Illustration by S. Kolhouri
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Wasserstein barycenter

Matrix C

Barycenters [Agueh and Carlier, 2011]

µ̄ = arg min
µ

n∑
i

λiW
p
p (µi, µ)

• λi > 0 and
∑n
i λi = 1.

• Uniform barycenter has λi = 1
n
,∀i.

• Interpolation with n=2 and λ = [1− t, t] with 0 ≤ t ≤ 1 [McCann, 1997].

• Regularized barycenters using Bregman projections [Benamou et al., 2015].

• The cost and regularization impacts the interpolation trajectory.

18 / 51



Wasserstein barycenter

Matrix C

Barycenters [Agueh and Carlier, 2011]

µ̄ = arg min
µ

n∑
i

λiW
p
p (µi, µ)

• λi > 0 and
∑n
i λi = 1.

• Uniform barycenter has λi = 1
n
,∀i.

• Interpolation with n=2 and λ = [1− t, t] with 0 ≤ t ≤ 1 [McCann, 1997].

• Regularized barycenters using Bregman projections [Benamou et al., 2015].

• The cost and regularization impacts the interpolation trajectory.

18 / 51



3D Wasserstein barycenter

Shape interpolation [Solomon et al., 2015]
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Principal Geodesics Analysis

Geodesic PCA in the Wasserstein space [Bigot et al., 2017]

• Generalization of Principal Component Analysis to the Wassertsein manifold.

• Regularized OT [Seguy and Cuturi, 2015].

• Approximation using Wasserstein embedding [Courty et al., 2017].

• Also note recent Wasserstein Dictionary Learning approaches

[Schmitz et al., 2017].
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Special case: 1D distribution

We consider the case where c(x, y) is a strictly convex and increasing function of

|x− y|.

• if x1 < x2 and y1 < y2, it is easy to check that

c(x1, y1) + c(x2, y2) < c(x1, y2) + c(x2, y1)

• As such, any optimal transport plan respects the ordering of the elements, and

the solution is given by the monotone rearrangement of µ1 onto µ2

This gives very simple algorithm to compute the transport in O(N logN), by sorting

both xi and yi and summing the absolute values of differences.
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Special case: 1D distribution

Consider the cumulative distribution functions Fµ associated to the µ distribution.

• It is defined such that Fµ(t) = µ(−∞, t].

We will note F−1
µ (q), q ∈ [0, 1] the corresponding generalized inverse distribution (or

quantile function)

• defined as F−1
µ (q) = inf{x ∈ R : Fµ(x) ≥ q}.

Then,

W1(µs, µt) =

∫ 1

0

c(F−1
µs

(q), F−1
µt

(q))dq
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Sliced Radon Wasserstein

This property gives a method for computing Wasserstein in higher dimensions (n > 1).

The principle is simple. Slice the distribution along lines, project the measures onto it

and compute 1D Wasserstein along those projections. More formally, consider the

Radon transform R:

R(µ, θ) =

∫
Sd−1

µ(x)δ(t− θ.x)dx

where t ∈ R parametrizes the support and ∀θ ∈ Sd−1 (unit sphere in Rd). Then, the

p-sliced Wasserstein distance is given by:

p-sliced Wasserstein distance pSW [Bonneel et al., 2015]

pSW p
p (µs, µt) =

∫
Sd−1

W p
p (R(µs, θ),R(µt, θ))dθ

works well in 2D, impractical in larger dimensions.
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Special case: transport between Gaussians

In the case where µs ∼ N (m1,Σ1) and µt ∼ N (m2,Σ2) the Wasserstein distance

with c(x,y) = ‖x− y‖22 reduces to:

W 2
2 between Gaussians

W 2
2 (µs, µt) = ||m1 −m2||22 + B(Σ1,Σ2)2

where B(, ) is the so-called Bures metric:

B(Σ1,Σ2)2 = trace(Σ1 + Σ2 − 2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2).

The optimal map T is given by

T (x) = m2 +A(x−m1)

with A = Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1
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Optimal transport with discrete distributions

Distributions
Source s

Target t

Matrix C OT matrix                   

OT Linear Program
γ0 = argmin

γ∈P

{
〈γ,C〉F =

∑
i,j

γi,jci,j

}
where C is a cost matrix with ci,j = c(xsi ,x

t
j) and the marginals constraints are

P =
{
γ ∈ (R+

)
ns×nt | γ1nt = µs,γ

T
1ns = µt

}
Solved with Network Flow solver of complexity O(n3 log(n)).
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Optimal transport with discrete distributions

Distributions

Source s

Target t

Matrix C OT matrix with samples
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Optimal transport with discrete distributions

• P is the Birkhoff polytope

• No unique solution in some cases, numerical instabilities

• Not differentiable !
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Regularized optimal transport

γλ0 = argmin
γ∈P

〈γ,C〉F + λΩ(γ), (4)

Regularization term Ω(γ)

• Entropic regularization [Cuturi, 2013].

• Group Lasso [Courty et al., 2016].

• KL, Itakura Saito, β-divergences,

[Dessein et al., 2016].

Why regularize?

• Smooth the “distance” estimation:

Wλ(µs, µt) =
〈
γλ0 ,C

〉
F

• Encode prior knowledge on the data.

• Better posed problem (convex, stability).

• Fast algorithms to solve the OT problem.

=0
=1

e-
2

=1
e-

1
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Entropic regularized optimal transport

Distributions

Source s

Target t

Reg. OT matrix with =1e-3 Reg. OT matrix with =1e-2

Entropic regularization [Cuturi, 2013]

Ω(γ) =
∑
i,j

γ(i, j)(log γ(i, j)− 1)

• Regularization with the negative entropy of γ.
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Resolving the entropy regularized problem

Entropy-regularized transport

The solution of entropy regularized optimal transport problem is of the form

γλ0 = diag(u) exp(−C/λ)diag(v)

Why ? Consider the Lagrangian of the optimization problem:

L(γ, α, β) =
∑
ij

γijCij + λγij(log γij − 1) + αT(γ1nt − µs) + βT(γT1ns − µt)

∂L(γ, α, β)/∂γij = Cij + λ log γij + αi + βj

∂L(γ, α, β)/∂γij = 0 =⇒ γij = exp(
αi
λ

) exp(−Cij

λ
) exp(

βj
λ

)

• Through the Sinkhorn theorem diag(u) and diag(v) exist and are unique.

• Can be solved by the Sinkhorn-Knopp algorithm (implementation in parallel,

GPU).
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Sinkhorn-Knopp algorithm

The Sinkhorn-Knopp algorithm performs alternatively a scaling along the rows and

columns of K = exp(−C
λ

) to match the desired marginals.

Algorithm 1 Sinkhorn-Knopp Algorithm (SK).

Require: a,b,C, λ

u(0) = 1,K = exp(−C/λ)

for i in 1, . . . , nit do

v(i) = b�K>u(i−1) // Update right scaling

u(i) = a�Kv(i) // Update left scaling

end for

return T = diag(u(nit))Kdiag(v(nit))

• Complexity O(kn2), where k iterations are required to reach convergence

• Fast implementation in parallel, GPU friendly

• Convolutive/Heat structure for K [Solomon et al., 2015]
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Sinkhorn as Bregman projections

Recalling that the Kullback Leibler (KL) divergence between two distribution is

KL(γ, ρ) =
∑
ij

γij log
γij
ρij

=< γ, log
γ

ρ
>F ,

Benamou et al. [Benamou et al., 2015] showed that solving for the OT problem is

actually a Bregman projection

OT as a Bregman projection

γ? is the solution of the following Bregman projection

γ? = argmin
γ∈P

KL(γ, ζ), (5)

where ζ = exp(−C
λ

).

• Sinkhorn in this case is an iterative projection scheme, with alternative projections

on marginal constraints.

• Generalizes well for barycenters computation
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Dual formulation of optimal transport

• Yet, solving for γ is impractical to intractable when dealing with high-dimensional

distributions

• especially if one is interested in computing the gradients of the Wasserstein

distance

• Other solving strategies should be taken into consideration

• Recalling that any LP problem can be turnt into its dual form:

primal form : dual form :

minimize z = cTx,

so that Ax = b

and x ≥ 0

maximize z̃ = bTy,

so that ATy ≤ c

• Weak duality: z̃ is a lower bound of z, Strong duality z̃ = z

• Strong duality is usually achieved via Farkas Theorem

32 / 51



Duality: general case with continuous distributions

We now introduce two functions scalar functions φ and ψ (also known as Kantorovich

potentials) that will act as our dual variables. Then, we consider the optimal problem

is equivalent (by the Rockafellar-Fenchel theorem) to:

max
φ,ψ

{∫
φdµs +

∫
ψdµt | φ(x) + ψ(y) ≤ c(x, y)

}
(6)

Note that the marginal constraint has been turned into an equality constraint on φ

and ψ

Introducing the c-transform (or c-conjugate) Hc which is in spirit close to a Legendre

transform:

φc
def
= Hc(φ) = inf

x
c(x, y)− φ(x) (7)

then the following problem is equivalent:

max
φ

{∫
φdµs +

∫
φcdµt | φ(x) + φc(y) ≤ c(x, y)

}
(8)
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Case c(x, y) = |x− y| (a.k.a W 1
1 )

3 2 1 0 1 2 3

4

3

2

1

0

1

2

3

4 (x)
c(y)

Whenever c(x, y) = |x− y|, then:

• existence of a solution but not unique

• For any φ ∈ Lip1 (set of 1-Lipschitz functions), we have φc(x) = −φ(x)

The optimal transport problem then amounts to find φ ∈ Lip1 as

sup
φ∈Lip1

∫
φd(µs − µt) = sup

φ∈Lip1
E

x∼µs

[φ(x)]− E
y∼µt

[φ(y)] (9)

• also known as Kantorovich-Rubinstein duality

• φ can be learnt as a neural network constrained to the set Lip1, see next section

on GAN
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Case c(x, y) = |x− y|2/2 (a.k.a W 2
2 )

Whenever the cost is quadratic, c(x, y) = |x− y|2/2, then:

• T (x) the transport mapping exists and is unique

• More remarkably, it is a gradient of a convex functions Φ(x)

T (x) = x−∇φ(x) = ∇(
x2

2
− φ(x)) = ∇(Φ(x)) (10)

• This is also known as Brenier’s Theorem
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Dual: empirical version

In the case when we have access to discrete distributions, µs (resp. µt) is

characterized by a set of locations Xs and masses a ∈ Rn
s

(resp. Xt and b ∈ Rn
t

)

Discrete dual version of OT

W (µs, µt) = max
α∈Rns

,β∈Rnt
,αi+βj≤c(Xs

i
,Xt

j
)

αTa + βTb (11)

i.e. find a scalar values per sample
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Regularized case

Adding regularization to the original problem turns the dual computation to an

unconstrained problem !

In the case of entropy regularization, i.e.

Wλ(µs, µt) = minγ∈P 〈γ,C〉F + λΩ(γ) with Ω(γ) =
∑
i,j γ(i, j) log γ(i, j),

the dual now reads (in a discrete settings, measures are collections of Diracs):

max
α,β

αTµs + βTµt −
1

λ
exp(

α

λ
)TK exp(

β

λ
) (12)

with K = exp(−C
λ

).

Remark: The Sinkhorn algorithm is a gradient ascent on the dual variables !
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Regularized case

With this unconstrained problem, incremental gradients techniques (SGD, SAG) can be

used to solve the problem !

• [Genevay et al., 2016] used the semi-dual formulation (one variable is removed by

replacing it with its c-transform) int the first stochastic version of Optimal

Transport problem

• [Seguy et al., 2017] used the full dual version with entropic and L2

regularizations, together with neural networks to parameterize the problem.

Target and Source distributions

Source dist.
Target dist.

Generated Samples
Target samples
Generated samples

Displacement field Generated density
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2 ways of minimizing the Wasserstein distance

In machine learning applications, one can be interested in finding distributions that

minimize the Wasserstein distance wrt. a reference measure. There are two ways of

understanding this:

• case 1: for a fixed support X, find the corresponding probability masses m

• case 2: for a fixed vector of probability masses m, e.g. uniform distribution,

find the corresponding support X

39 / 51



Case 1: fixed support

Recalling the form of the dual

W (µ, µt) = max
α∈Rns

,β∈Rnt
,αi+βj≤c(X,Xt

j
)

αTm + βTb (13)

• W (µ, µt) is convex wrt. m

• ∂mW (µ, µt) = α∗

• Entropy regularized case: Wλ(µ, µt) is convex and ∇mWλ(µ, µt) = λ logu
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Case 2: fixed probability masses m

Recalling the form of the primal problem

W 2
2 (µ, µt) = min

γ∈P
< γ,1ns1T

ntX
2 + Xt2T1nt1ns − 2XXt > (14)

• W 2
2 (µ, µt) decreases if X← Xtγ∗T diag(m−1)

• explicit gradient for the regularized case.

• Barycentric interpolation !

• see Rémi next slides
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General case: autodifferentiation

Automatic differentiation to the rescue !

Image from Marco Cuturi

42 / 51



Outline

Optimal transport : introduction

Introduction to OT

Simple applications

Wasserstein distances

Definition

Barycenters and geometry of optimal transport

Computational aspects of optimal transport

Regularized optimal transport

Dual formulation

Minimizing the Wasserstein distance

Gromov-Wasserstein

42 / 51



Taking into account spaces discrepancy

{
Ωs : Source space

Ωt : Target space
such that dim(Ωs) 6= dim(Ωt)

⇒ We can’t define direct dissimilarities between source and target samples
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Gromov-Wasserstein distance

If Ωs and Ωt are two spaces of different dimensions, Mémoli [Mémoli, 2011] proposed

the Gromov-Wasserstein Distance between the two measured dissimilarity matrices

(C, p) and (C, q) :

Gromov-Wasserstein distance

GW (C,C, µs, µt)=argminγ∈P

(∑
i,j,k,l L(Ci,k, Cj,l) ∗ γi,j ∗ γk,l

)

• This is related to a Quadratic Assignment Problem (QAP), opposed to the linear

assignment problem as with the classical OT problem.

• non-convex problem, NP-hard
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Gromov-Wasserstein distance

What is L(Ci,k, Cj,l) ?

• Distance/dissimilarity between distances

• Several Choices are possible :

• L(a, b) = 1
2
|a− b|2

• L(a, b) = KL(a|b) = a ∗ log(a
b

)− a + b
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Computing GW coupling

Peyré and colleagues consider the entropic regularization of this

problem [Peyré et al., 2016] :

GW (C,C, µs, µt)=argmin
γ∈P

∑
i,j,k,l

L(Ci,k, Cj,l) ∗ γi,j ∗ γk,l − γH(γ)


One can easily compute GW by using projected gradient descent. With the right

parameters, iterations can be simplified in :

Iteration :

γk+1 ← argmin
γ∈P

〈
γ,L(C,C)⊗ γk

〉
− γH(γ)

Where ⊗ denotes the tensorial product:

L(C,C)⊗ γ =

∑
k,l

L(Ci,k, Cj,l)γk,l


i,j

The projection can be solved by simply applying a Sinkhorn algorithm.

46 / 51



Fast computation of tensor-matrix multiplication

We can show that, if L(a, b) can be written as f1(a) + f2(b)− h1(a)h2(b),

L(C,C)⊗ γ = cC,C − h1(C)γh2(C)T

with cC,C = f1(C)pITN2
+ IN1

qT f2(C)T (independant of γ)

example :

L(a, b) =
1

2
|a− b|2 ⇒


f1(a) = 1

2
a2

f2(b) = 1
2
b2

h1(a) = a

h2(b) = b
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example : 3D to 2D projection

Figure 1: Source and target measures and associated cost matrices C and C

GW coupling matrix :

48 / 51



Illustration of applications of GW

Figure 2: Shape matching between 3D and 2D objects

Figure 3: Visualization/classification of shapes datasets
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Gromov-Wasserstein barycenters

Since we have defined a distance between two measured similarity matrices, we can compute

barycenters between those spaces.

Example : progressive shape interpolation with Gromov-Wasserstein barycenters
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Summary

Optimal transport is a well theoretically grounded ways of comparing probability

distributions

• that allows to compare empirical distributions in a non-parametric ways

• that leverages on a ground metric in the embedding space

• for which exist several algorithmic solutions

It comes in several flavours:

• Monge problem: find a mapping (transport map)

• Kantorovich problem: find a coupling (transport plan)
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Iterative Bregman projections for regularized transportation problems.

SISC.

Bigot, J., Gouet, R., Klein, T., López, A., et al. (2017).
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