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Overview of the class

Planning of the day:

e (Morning) 3h of introductory course to optimal transport and related applications
to machine learning

e 1h20: introduction to computational optimal transport (nicolas)
e small break
e 1h20: applications to machine learning problems (rémi)

e (Afternoon) 3h of practical sessions in Python
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Optimal transport : introduction



What is optimal transport ?

The natural geometry of probability measures

Monge Kantorovich Koopmans Dantzig Brenier Otto McCann Villani

Nobel 75 Fields '10
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The origins of optimal transport
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Problem [Monge, 1781]

e How to move dirt from one place (déblais) to another (remblais) while minimizing
the effort ?
e Find a mapping T between the two distributions of mass (transport).

e Optimize with respect to a displacement cost ¢(z,y) (optimal).
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Optimal transport (Monge formulation)

Quadratic cost c(x, y) = |x — y|?

Distributions
— ¢(20,y)
—— ¢(40,y)
— ¢(60,y)
0 20 40 60 80 100 0 20 40 60 80 100
Xy y

e Probability measures /5 and u; on and a cost function ¢ : Q¢ x €; — R*.

e The Monge formulation [Monge, 1781] aim at finding a mapping 7" : 2, — €,

inf / c(x, T(x))ps (x)dx (1)

TH#Hps=pt Q.
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What is T#pus = py ?

T'# is the so called push forward operator

it transfers measures from one space ()5 to another space €,
e it is equivalent to:

je(A) = (T (4)

/ o(w)dpe(y) = / o(T(@))das )
Q

Qs
e for smooth measures s = p(z)dz and s = n(x)dx

T#pe = pr = p(T(2))|det(IT ()| = ()

e a.k.a. change of variable formula
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Non-existence / Non-uniqueness

Solving for this push-forward operator is a non-convex optimization problem,

e for which existence is not guaranteed,

e nor unicity

/Y f eV Ve’
“:// ”:7 I

Note: [Brenier, 1991] proved existence and unicity of the Monge map for

c(z,y) = ||= — y||* and distributions with densities (i.e. continuous).
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Kantorovich relaxation

Y1
Y2

Y3

e Leonid Kantorovich (1912-1986), Economy nobelist in 1975, proposed a different
formulation of the problem

e with applications mainly for ressource allocation problems
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Optimal transport (Kantorovich formulation)

Joint distribution y(x, y) = ps(x)ue(y) Transport cost c(x, y) = |x — y|?

—— Source us(x)
—— Target u(y)
— yxy)

e The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic
coupling v € P(Qs x ) between Qs and Q:

Yo = argmin / c(x,y)v(x, y)dxdy, (2)
v Qs Xy

st. yeP = {7 >0, / v(x,y)dy = us,/ v(x,y)dx = ut}
Q4

s

e ~ is a joint probability measure with marginals 15 and .

e Linear Program that always have a solution.
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The 3 ways of optimal transport

Discrete Semi-discrete Continuous
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Couplings
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Image from Gabriel Peyré
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Histogram matching in images : color grading

Pixels as empirical distribution [Ferradans et al., 2014]
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Histogram matching in images : color grading

Image colorization [Ferradans et al., 2014]

Original X°

Original Y

Proposed method
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Matching words embedding

3

document 1 K ‘gl;:ets’ document 2
‘Obama’
Obama - ./ 1 24 T!le
speaks ® ¢ ks’ President
‘President”  SPeaKs
to residen greets
the the
media ‘Chicago’ press
in ‘media’ in
Illinois o0 Chicago
“Illinois” Press

word2vec embedding

e Words are embedded in a high-dimensional space with neural networks

e Matching two documents is an OT problem, with the cost being the I distance in
the embedded space
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Wasserstein distances
Definition

Barycenters and geometry of optimal transport
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Wasserstein distance

Source distribution Divergences (scaled)

J— W%

— W%

— h(TV)

—— I, (sq. eucl.)

Target distributions

_~

Wasserstein distance

W2 (j1e0 1¢) = min / oy y)dxdy = E lexy)] ()
YEP Q4% (x,y)~y
where e(x,y) = [|Ix — v

e A.K.A. Earth Mover's Distance (W1) [Rubner et al., 2000].
e Do not need the distribution to have overlapping support.

e Works for continuous and discrete distributions (histograms, empirical).
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Discrete distributions: Empirical vs Histogram

n n
Discrete measure: = Zﬂi(sxz-: x; €, Z,ui =1
i—1 i=1

Lagrangian (point clouds) Eulerian (histograms)
e %
°
e® . %
00°® .
am00®® x;
& °8
Q
e Constant weight: u; = % e Fixed positions x; e.g. grid
e Quotient space: Q", X, e Convex polytope X, (simplex):

{(ua)i > 0;37, pi = 1}
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Wasserstein space

The space of probability distribution equipped with the Wasserstein metric (P, (X),
W3 (X)) defines a geodesic space with a Riemannian structure [Santambrogio, 2014].

e Geodesics are shortest curves on P,(X) that link two distributions

Geodesic in the 2-Wasserstein space Geodesic in the Euclidean space

Lo Lo Lo M. L Lol

t=0 t=025 t=05 t=07 t=1 t=0 t=025 t=05 t=07 t=1

dp*(z,t) = I"(z, t)dx

Illustration by S. Kolhouri
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Wasserstein barycenter

L2 Wasserstein Matrix C

Barycenters [Agueh and Carlier, 2011]

i = arg min N WP i,
i = arg mi Z 7'

i >0 and E?/\l =1.
Uniform barycenter has \; = %,W.

Interpolation with n=2 and XA = [1 —¢,¢] with 0 < ¢ <1 [McCann, 1997].

Regularized barycenters using Bregman projections [Benamou et al., 2015].

e The cost and regularization impacts the interpolation trajectory.
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3D Wasserstein barycenter

Shape interpolation [Solomon et al., 2015]
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Principal Geodesics Analysis
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Geodesic PCA in the Wasserstein space [Bigot et al., 2017]

e Generalization of Principal Component Analysis to the Wassertsein manifold.
e Regularized OT [Seguy and Cuturi, 2015].
e Approximation using Wasserstein embedding [Courty et al., 2017].

e Also note recent Wasserstein Dictionary Learning approaches

[Schmitz et al., 2017].
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Computational aspects of optimal transport
Regularized optimal transport
Dual formulation

Minimizing the Wasserstein distance
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Special case: 1D distribution

We consider the case where ¢(z,y) is a strictly convex and increasing function of
|z —yl.
e if x1 < x2 and y1 < y2, it is easy to check that
c(z1,y1) + (w2, y2) < c(21,y2) + c(22,41)

e As such, any optimal transport plan respects the ordering of the elements, and
the solution is given by the monotone rearrangement of 1 onto 2

This gives very simple algorithm to compute the transport in O(N log N), by sorting
both z; and y; and summing the absolute values of differences.

Yo W SO
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Special case: 1D distribution

Consider the cumulative distribution functions F), associated to the p distribution.
e |t is defined such that F,(t) = pu(—o0,t].

We will note F; *(g), g € [0, 1] the corresponding generalized inverse distribution (or
quantile function)

e defined as F, '(¢) = inf{z € R: F,(z) > ¢}
Then,

Wi (1o ae) = / c(F;7(a), FiM(a))da
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Sliced Radon Wasserstein

This property gives a method for computing Wasserstein in higher dimensions (n > 1).

The principle is simple. Slice the distribution along lines, project the measures onto it
and compute 1D Wasserstein along those projections. More formally, consider the
Radon transform R:

R, 0) = [(171 w(x)é(t — 0.x)dx

where ¢ € R parametrizes the support and V0 € S9~1 (unit sphere in Rd). Then, the
p-sliced Wasserstein distance is given by:

p-sliced Wasserstein distance pSW [Bonneel et al., 2015]

PSWEGuesie) = [ WER(:,0), R, 6))d
-

works well in 2D, impractical in larger dimensions.
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Special case: transport between Gaussians

In the case where ;15 ~ AV (m1, %) and py ~ N (mg2, X2) the Wasserstein distance
with ¢(x,y) = ||x — y||3 reduces to:

W2 between Gaussians

W3 (s, ) = |[my — mo|[5 + B(X1, 32)?

where B(, ) is the so-called Bures metric:
B(£1, %)% = trace(E; + Ba — 2(21/25,51/%)1/2),
The optimal map 7' is given by

T(x) =m2 + A(x —my)

\'\’\’ X NN NN §
w%\\\..O \X\\\ve oo
WNNNNVVQGO® | | "\ \\\rveooo
ASSS S L D T 0 “\N\\\Teeoocs
NS 2 2 27 4 NN NN
e ol A
e e ———
e - ——
with A = 57 1/2(21/2n,n1/2) /2y 12 ——
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Optimal transport with discrete distributions

Distributions Matrix C OT matrix y

[ [ Source U
I Target pe

OT Linear Program

7o = argmin {(% C)p = Z%’Civj}
YEP ij

where C is a cost matrix with ¢; ; = ¢(x},x}) and the marginals constraints are
P = {7 e RP)ysXme |y = g,y T, = #t}

Solved with Network Flow solver of complexity O(n® log(n)).
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Optimal transport with discrete distributions

Distributions Matrix C OT matrix y
.. ° t Y
° °
o oo cc
@ Source ys
g ® Target y;
% o
[
°
° ‘S‘
e ©

OT Linear Program
Yo = argmin (7, C)p = Z Yi,5Ci,j
YEP i\

where C is a cost matrix with ¢; ; = ¢(x{,x}) and the marginals constraints are
P = {'Y € (RJr)nsxntl'Ylnt = US7'YT1n5 = Mt}

Solved with Network Flow solver of complexity O(n®log(n)).
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Optimal transport with discrete distributions

OT matrix with samples

Distributions Matrix C
L] ] ®
]
LI )
® J0° to
@ Source s
o ® Targetu;
% o
®3
]
° ‘S\
o ©

OT Linear Program
Yo = argmin (7, C)p = Z%,J‘Ci,j
~YEP i

where C is a cost matrix with ¢; ; = ¢(x{,x}) and the marginals constraints are
P = {'Y € (RJr)nsxntl'Ylnt = US77T1ns = Nt}

Solved with Network Flow solver of complexity O(n®log(n)).
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Optimal transport with discrete distributions

e P is the Birkhoff polytope
e No unique solution in some cases, numerical instabilities

e Not differentiable !
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Regularized optimal transport
~p = argmin  (7,C) + (), (4) il |
YEP

Regularization term Q(~) , 'I-..

e Entropic regularization [Cuturi, 2013].

A=0

e Group Lasso [Courty et al., 2016].

e KL, Itakura Saito, -divergences,

Dessein et al., 2016].
[ ] ! T
Why regularize? ° i
I
e Smooth the “distance” estimation: =
W(s, ) = (75, C) .
e Encode prior knowledge on the data. i =
P : g} -
o Better posed problem (convex, stability). 9
e Fast algorithms to solve the OT problem. ri
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Entropic regularized optimal transport

Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2

Distributions
° e
®
oq [}
o o go
@ Source Us
I ® Target yg
0% $
[ )
°
° “\
o ©

Entropic regularization [Cuturi, 2013]
Qy) = _ (G, 4)(logy(i, ) — 1)

i

e Regularization with the negative entropy of ~.
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Entropic regularized optimal transport

Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2

Distributions

ey ] ®
° °
® o0 go
@ Source s
® ® Target
% o
®3
°
Y

Entropic regularization [Cuturi, 2013]
Qy) = (G, 4)(logy(i, ) — 1)

0]

e Regularization with the negative entropy of ~.
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Resolving the entropy regularized problem

Entropy-regularized transport

The solution of entropy regularized optimal transport problem is of the form
v = diag(u) exp(—~C/A)diag(v)

Why 7 Consider the Lagrangian of the optimization problem:

L(v,a,p) = Z'Yijcij + )"71']' (lOg'yij —1)+ O‘T('Y]-nt — ps) + BT('YTlns — pt)

ij
IL(v, a, B)/a')’ij = Cij + Alog Yij T o+ Bj

DLy, )/07, =0 = 7y = exp( 3 exp(~ Sy exp( D)

e Through the Sinkhorn theorem diag(u) and diag(v) exist and are unique.

e Can be solved by the Sinkhorn-Knopp algorithm (implementation in parallel,
GPU).
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Sinkhorn-Knopp algorithm

The Sinkhorn-Knopp algorithm performs alternatively a scaling along the rows and
columns of K = exp(—$) to match the desired marginals.

Algorithm 1 Sinkhorn-Knopp Algorithm (SK).
Require: a,b,C, A\
u® =1, K = exp(—C/\)
foriin1,...,n; do
v =b oK ul""Y // Update right scaling
u” =a@Kv® // Update left scaling
end for
return 7 = diag(u™*))Kdiag(v("i*))

e Complexity O(an), where k iterations are required to reach convergence
e Fast implementation in parallel, GPU friendly

e Convolutive/Heat structure for K [Solomon et al., 2015]
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Sinkhorn as Bregman projections

Recalling that the Kullback Leibler (KL) divergence between two distribution is
Vij
KL(v,p) = Y 7 log -2 =< v,log T >p,
i Pij P
Benamou et al. [Benamou et al., 2015] showed that solving for the OT problem is

actually a Bregman projection

OT as a Bregman projection

~* is the solution of the following Bregman projection

~* = argmin KL(~, ¢), (5)
YEP

where ¢ = exp(—%).
e Sinkhorn in this case is an iterative projection scheme, with alternative projections
on marginal constraints.

e Generalizes well for barycenters computation
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Dual formulation of optimal transport

e Yet, solving for ~ is impractical to intractable when dealing with high-dimensional

distributions

e especially if one is interested in computing the gradients of the Wasserstein

distance

e Other solving strategies should be taken into consideration

e Recalling that any LP problem can be turnt into its dual form:

primal form :

minimize z
so that Ax =
and x >

dual form :
maximize z = bly,
sothat ATy < ¢

oo e
ke

e Weak duality: Z is a lower bound of z, Strong duality Z = 2

e Strong duality is usually achieved via Farkas Theorem

32/51



Duality: general case with continuous distributions

We now introduce two functions scalar functions ¢ and 1) (also known as Kantorovich
potentials) that will act as our dual variables. Then, we consider the optimal problem
is equivalent (by the Rockafellar-Fenchel theorem) to:

%x{ [ o+ [ ¢(w)+w(y)§c(:r,y)} (6)

Note that the marginal constraint has been turned into an equality constraint on ¢
and v

Introducing the c-transform (or c-conjugate) H which is in spirit close to a Legendre

transform:
¢ def

¢° £ H(9) = inf el ) — 6(2) (7)

then the following problem is equivalent:

max{ [ oae.+ [ 6% | 600+ 6°0) < clon) | (8)

33/51



)=z —y| (a-k.a W})

Whenever c(z,y) = |z — y|, then:

e existence of a solution but not unique

e For any ¢ € Lip" (set of 1-Lipschitz functions), we have ¢°(z) = —é(x)

The optimal transport problem then amounts to find ¢ € Lip' as

sup [ G~ ) = sup B [ola)] - E [6(s) ©)

pclipl d)GLlp1 X s

e also known as Kantorovich-Rubinstein duality

e ¢ can be learnt as a neural network constrained to the set Lip!, see next section
on GAN
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Case c(r,y) = v~ y*/2 (ak.a W)

Whenever the cost is quadratic, ¢(x,y) = |x — y|?/2, then:

e T'(x) the transport mapping exists and is unique
e More remarkably, it is a gradient of a convex functions ®(x)

$2

T(z) =z = Vo(z) = V(5 — () = V(®(2)) (10)

e This is also known as Brenier’'s Theorem
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Dual: empirical version

In the case when we have access to discrete distributions, s (resp. p¢) is
. . s t
characterized by a set of locations X* and masses a € R™ (resp. X* and b € R™)

Discrete dual version of OT

W (s, t) = max aa+8"b (11)

a€R™® BERM 0 +B; <c(X5 Xt)

i.e. find a scalar values per sample
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Regularized case

Adding regularization to the original problem turns the dual computation to an
unconstrained problem !

In the case of entropy regularization, i.e.

W (e pe) = minyep (7, C)p + A7) with Q(v) = 3, ¥(i, ) log v(i, ),

the dual now reads (in a discrete settings, measures are collections of Diracs):

Y Kexp(?) (12)

«

1
max aTus + BT,ut — —exp(
a,B A

A

with K = exp(—%).

Remark: The Sinkhorn algorithm is a gradient ascent on the dual variables !
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Regularized case

With this unconstrained problem, incremental gradients techniques (SGD, SAG) can be
used to solve the problem !

e [Genevay et al., 2016] used the semi-dual formulation (one variable is removed by
replacing it with its c-transform) int the first stochastic version of Optimal
Transport problem

e [Seguy et al., 2017] used the full dual version with entropic and L2
regularizations, together with neural networks to parameterize the problem.

Target and Source distributions Generated Samples Dlsplacement field Generated density

+ Target samples {/é/
. omiestaois \§§§“;§;i s 6
B

* NN Sy ©)
%‘ _»*&t N 6)
u« i ik RN LN 2
et ot v o TR o NN

’ % ** . 533 CRIENNY,
& Doan Y4t o

ket
+  Target dist.
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2 ways of minimizing the Wasserstein distance

In machine learning applications, one can be interested in finding distributions that
minimize the Wasserstein distance wrt. a reference measure. There are two ways of
understanding this:

e case 1: for a fixed support X, find the corresponding probability masses m

e case 2: for a fixed vector of probability masses m, e.g. uniform distribution,
find the corresponding support X
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Case 1: fixed support

Recalling the form of the dual

W (g, pe) = max o"m+ 4" (13)
a€R"® BERN” o+ 6, <e(X,X$)

o W, pe) is convex wrt. m

o 0 W (i, pe) = a”
e Entropy regularized case: W (yt, 14) is convex and V., Wi (1, i) = Alogu
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Case 2: fixed probability masses

Recalling the form of the primal problem

W3 (1, ) = min <, 1os1 5 X% 4+ X271 o1, — 2XXE > (14)
YE

W3 (11, jue) decreases if X < X*~*Tdiag(m™")

e explicit gradient for the regularized case.
e Barycentric interpolation !

e see Rémi next slides
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General case: autodifferentiation

Automatic differentiation to the rescue !

l—10+1

Image from Marco Cuturi
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Outline

Gromov-Wasserstein
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Taking into account spaces discrepancy

Qs : Source space ) )
such that dim(Qs) # dim(Q)
€, : Target space

= We can't define direct dissimilarities between source and target samples
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Gromov-Wasserstein distance

If Qs and €, are two spaces of different dimensions, Mémoli [Mémoli, 2011] proposed
the Gromov-Wasserstein Distance between the two measured dissimilarity matrices
(C,p) and (C,q):

Gromov-Wasserstein distance

GW(C,C, s, pt) =argmin, cp (Zz]kl L(Cik, Cj) * Vi * ’Yk,l)

e This is related to a Quadratic Assignment Problem (QAP), opposed to the linear
assignment problem as with the classical OT problem.

e non-convex problem, NP-hard
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Gromov-Wasserstein distance

What is L(C; %, Cj1) ?

e Distance/dissimilarity between distances
e Several Choices are possible :

o L(a,b) = L|a—bJ?

o L(a,b) = KL(alb) = axlog(}) —a+b

55 N
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+ + !
45 +
+ +
40 t t
e L(Cl c?
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30
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20 +
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Computing GW coupling

Peyré and colleagues consider the entropic regularization of this
problem [Peyré et al., 2016] :

GW(C,C, pis, ) =argmin (Y L(Cig, Cy) ¥, 5 * Ypy — YH()
YE

0,5,k,0
One can easily compute GW by using projected gradient descent. With the right
parameters, iterations can be simplified in :
Iteration :

v+ argmin <% £(C,C)® 7k> —yH(7)
YEP

Where ® denotes the tensorial product:

LC,C)®~ = ZL(Ci,k76j,l)7k,l
k,l .
i.j

The projection can be solved by simply applying a Sinkhorn algorithm.
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Fast computation of tensor-matrix multiplication

We can show that, if L(a,b) can be written as f1(a) + f2(b) — h1(a)ha(b),
L(C,0) @ = co 5 — h(C)vha(C)T

with c, 5 = f1 (C’)pIq]\}2 +1In, 97 f2(C)T (independant of )

example :
1 e Zin
L(a,b) = Sla— b? = }{12((2; _ gb
ha(b) =b
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example : 3D to 2D projection

Figure 1: Source and target measures and associated cost matrices C' and C'

GW coupling matrix :

0.04
0.03
002
001

0.00
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Illustration of applications of GW

Source Targets

Figure 2: Shape matching between 3D and 2D objects

wn

MDS in 2—D i
RREE g sdeaka 0
OO "/ “'93‘ Y1
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o
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in” 3-D

Figure 3: Visualization/classification of shapes datasets
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Gromov-Wasserstein barycenters

Since we have defined a distance between two measured similarity matrices, we can compute
barycenters between those spaces.
Example : progressive shape interpolation with Gromov-Wasserstein barycenters
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10 10
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10 o 10 o
0s s os os os
00 fi{{ﬁ” 00 oo 00
05 # s s €5
10

0 0 ]
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Optimal transport is a well theoretically grounded ways of comparing probability
distributions

e that allows to compare empirical distributions in a non-parametric ways
e that leverages on a ground metric in the embedding space

e for which exist several algorithmic solutions
It comes in several flavours:

e Monge problem: find a mapping (transport map)

e Kantorovich problem: find a coupling (transport plan)
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