Optimal transport for machine learning

Practical sessions

Rémi Flamary, Nicolas Courty, Marco Cuturi

Data SCience Summer School (DS3) 2018, Paris, France
Course organization

A day in Optimal Transport

09:00 - 10:30 Introduction to OT

11:00 - 12:30 Practical session 1

1. Intro to OT with POT
2. Regularized OT with Sinkhorn
3. Word Mover’s Distance on text

14:00 - 15:30 Advanced OT

16:00 - 17:30 Practical session 2

- Domain Adaptation on digits
- Color grading
- Wasserstein GAN
Get the files

Github repository:
https://github.com/rflamary/OTML_DS3_2018

All files:
https://github.com/rflamary/OTML_DS3_2018/archive/master.zip

Solution for all practical sessions

https://remi.flamary.com/cours/otml/solution_[NUMBER].zip

Where [NUMBER] is replaced by the integer part of the value of the Wasserstein distance obtained in Practical Session 1 Part 1 using the Manhattan/Cityblock ground metric.
Required Python libraries

Install POT (Python Optimal Transport)

- On Anaconda (in terminal):

  ```bash
  conda install -c conda-forge pot
  ```

- With pip (requires C compiler):

  ```bash
  pip install pot
  ```

- Test install by executing:

  ```python
  import ot
  ```

Install Keras (optional, only for WGAN session)

- On anaconda (in terminal):

  ```bash
  conda install -c conda-forge keras
  ```

- With pip (requires C compiler):

  ```bash
  pip install keras
  ```
Part 1: Intro to OT with POT

- File: 0_Intro_OT.ipynb
- Problem of Cafés and Bakeries (in Manhattan).
- Visualize the problem (on the map and in matrix form).
- Solve OT with different ground metrics.
- Interpret the OT matrix.
Part 2: Implement Sinkhorn [Cuturi, 2013]

- File: 0_Intro_OT.ipynb
- Implement the Sinkhorn-Knopp loop.
- Interpret the OT matrix.
Part 3: Word Mover’s Distance [Kusner et al., 2015]

- File: 4_WMD.ipynb
- Reproduce figure above.
- Interpret the OT matrix on words.
- Perform regression for sentence similarity.
A day in Optimal Transport

09:00 - 10:30 Introduction to OT

11:00 - 12:30 Practical session 1
 1. Intro to OT with POT
 2. Regularized OT with Sinkhorn
 3. Word Mover’s Distance on text

14:00 - 15:30 Advanced OT

16:00 - 17:30 Practical session 2
 • Domain Adaptation on digits
 • Color grading
 • Wasserstein GAN
Domain adaptation with OT [Courty et al., 2016]

- File: 1_DomainAdaptation.ipynb
- Adapting between MNIST and USPS digits datasets.
- Solve OT and apply approximate Monge Mapping.
- Look at displaced samples and train classifier.
Domain adaptation with OT [Courty et al., 2016]

- File: `1_DomainAdaptation.ipynb`
- Adapting between MNIST and USPS digits datasets.
- Solve OT and apply approximate Monge Mapping.
- Look at displaced samples and train classifier.
Practical Session 2

Color Grading [Ferradans et al., 2014]

- File: 2_ColorGrading.ipynb
- Adapt between paintings from Gustav Klimt and Egon Schiele.
- Represent image as distribution of pixels in 3D.
- Compute OT and apply approximate Monge mapping.
- Reconstruct image.
Practical Session 2

Color Grading [Ferradans et al., 2014]

- File: 2_ColorGrading.ipynb
- Adapt between paintings from Gustav Klimt and Egon Schiele.
- Represent image as distribution of pixels in 3D.
- Compute OT and apply approximate Monge mapping.
- Reconstruct image.
Wasserstein GAN [Arjovsky et al., 2017]

- File: 3_WGAN.ipynb
- Requires Keras and knowledge of neural networks.
- Design and learn Wasserstein GAN for 2D samples.
- Implement both original WGAN and improved WGAN (gradient penalty [Gulrajani et al., 2017]).
- Convergence in few minutes on laptops.

Pattern Analysis and Machine Intelligence, IEEE Transactions on.

Regularized discrete optimal transport.

SIAM Journal on Imaging Sciences, 7(3).

Improved training of wasserstein gans.

From word embeddings to document distances.