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Optimal Transport and

Gromov-Wasserstein



Optimal transport with discrete distributions

Distributions
Source s

Target t

Matrix C OT matrix                   

Kantorovitch formulation : OT Linear Program
When µs =

∑ns
i=1 aiδxs

i
and µt =

∑nt
i=1 biδxt

i

W p
p (µs, µt) = min

T∈Π(µs,µt)

{
〈T,C〉F =

∑
i,j

Ti,jci,j

}
where C is a cost matrix with ci,j = c(xsi ,x

t
j) = ‖xsi − xtj‖p and the constraints are

Π(µs, µt) =
{
T ∈ (R+)ns×nt |T1nt = a,TT1ns = b

}
• Linear program with nsnt variables and ns + nt constraints.

• Solving the OT problem with network simplex is O(n3 log(n)) for n = ns = nt.

• Wp(µs, µt) is called the Wasserstein distance (EMD for p = 1). 4 / 37
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Optimal transport with discrete distributions
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Entropic regularized optimal transport

Distributions

Source s

Target t

Reg. OT matrix with =1e-3 Reg. OT matrix with =1e-2

Entropic regularization [Cuturi, 2013]

Wε(µs, µt) = min
T∈Π(µs,µt)

〈T,C〉F + ε
∑
i,j

Ti,j log Ti,j

• Regularization with the negative entropy −H(T).

• Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].

• Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.

• Loss and OT matrix are differentiable and have better statistical properties

[Genevay et al., 2018].

• Classical OT needs distributions lying in the same space → Gromov-Wasserstein.
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Gromov-Wasserstein divergence

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

GWp(µs, µt) =

(
min

T∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′j,l|pTi,j Tk,l
) 1

p

with µs =
∑
i aiδxs

i
and µt =

∑
j bjδxtj and Di,k = ‖xsi − xsk‖, D′j,l = ‖xtj − xtl‖

• Distance between metric measured spaces : across different spaces.

• Search for an OT plan that preserve the pairwise relationships between samples.

• Invariant to isometry in either spaces (e.g. rotations and translation).
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Solving the Gromov Wasserstein optimization problem

GWp
p(µs, µt) = min

T∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′j,l|pTi,j Tk,l

with µs =
∑
i aiδxs

i
and µt =

∑
j bjδxtj and Di,k = ‖xsi − xsk‖, D′j,l = ‖xtj − xtl‖

Optimization problem

• Quadratic Program (Wasserstein is a linear program).

• Nonconvex, NP-hard, related to Quadratic Assignment Problem (QAP).

Optimization algorithm

• Large problem and non convexity forbid standard QP solvers.

• Local solution can be obtained with conditional gradient (Frank-Wolfe)

[Vayer et al., 2018] (each iteration is an OT problems).

• Gromov in 1D has a close form (solved in discrete with a sort) [Vayer et al., 2019].

• Can be regularized by entropy similarly to classical OT.
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Entropic Gromov-Wasserstein

Optimization Problem [Peyré et al., 2016a]

GWp
p,ε(µs, µt) = min

T∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′j,l|pTi,j Tk,l + ε
∑
i,j

Ti,j log Ti,j (1)

with µs =
∑
i aiδxs

i
and µt =

∑
j bjδxtj and Di,k = ‖xsi − xsk‖, D′j,l = ‖xtj − xtl‖

• Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic GW [Peyré et al., 2016a]

• Problem (1) can be solved using a KL mirror descent.

• This is equivalent to solving at each iteration t

T(t+1) = min
T∈P

〈
T,G(t)

〉
F

+ ε
∑
i,j

Ti,j log Ti,j

Where G
(t)
i,j = 2

∑
k,l |Di,k −D

′
j,l|pT

(t)
k,l is the gradient of the GW loss at previous

point T(k).

• Problem above can be solved using a Sinkhorn-Knopp algorithm of entropic OT.

• Very fast approximation exist for low rank distances [Scetbon et al., 2021].
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Gromov-Wasserstein between graphs

Modeling the graph structure with a pairwise matrix D

• An undirected graph G := (V,E) is defined by V = {xi}i∈[N] set of the N nodes

and E = {(xi,xj)|xi ↔ xj} set of edges.

• Structure represented as a symmetric matrix D of relations between the nodes.

• Possible choices : Adjacency matrix (used in this study), Laplacian matrix,

Shortest path matrix.

Graph as a distribution (D,h)
• Graph represented as a discrete distribution

µX =
∑
i hiδxi .

• The positions xi are implicit and represented

as the pairwise matrix D.

• hi are the masses on the nodes of the graphs

(uniform by default).
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Applications of GW [Solomon et al., 2016]

Shape matching between 3D and 2D surfaces

Multidimensional scaling (MDS) of shape collection
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Fused Gromov-Wasserstein



Structured data

Structured data

• Some structured data can be viewed as a combination of features informations

linked within each other by some structural information.

• Can be seen as a distribution on a joint feature/structure space.

• Example : labeled graph.

Meaningful distances on labeled structured data

• Us both features (labels) and structure (graph).

• Allows for comparison, classification.

• Data science (statistics, means, concentration).
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Structured data as distributions

}
}

}
Graph data representation

µ =

n∑
i=1

hiδ(xiai)

• Nodes are weighted by their mass hi.

• But no common metric between the structure points xi of two different graphs.

• Features values ai can be compared through the common metric
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Fused Gromov-Wasserstein distance

a

b

Fused Gromov Wasserstein distance
µs =

∑n
i=1 hiδxi,ai and µt =

∑m
j=1 gjδyj ,bj

FGWp,q,α(D,D′, µs, µt) =

(
min

T∈Π(µs,µt)

∑
i,j,k,l

(
(1−α)Cqi,j+α|Di,k−D

′
j,l|q

)p
Ti,j Tk,l

) 1
p

with Di,k = ‖xi − xk‖ and D′j,l = ‖yi − yl‖ and Ci,j = ‖ai − bj‖
• Parameters q > 1, ∀p ≥ 1.

• α ∈ [0, 1] is a trade off parameter between structure and features.
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FGW Properties (1)

FGWp
p,q,α(D,D′, µs, µt) = min

T∈Π(µs,µt)

∑
i,j,k,l

(
(1− α)Cqi,j + α|Di,k −D′j,l|q

)p
Ti,j Tk,l

Metric properties [Vayer et al., 2020]

• FGW defines a metric over structured data with measure and features

preserving isometries as invariants.

• FGW is a metric for q = 1 a semi metric for q > 1, ∀p ≥ 1.

• The distance is nul iff :

• There exists a Monge map T#µs = µt.

• Structures are equivalent through this Monge map (isometry).

• Features are equal through this Monge map.

Other properties for continuous distributions

• Interpolation between W (α = 0) and GW (α = 1) distances.

• Geodesic properties (constant speed, unicity).
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FGW Properties (2)

FGWp,q,α(D,D′, µs, µt) =

(
min

T∈Π(µs,µt)

∑
i,j,k,l

(
(1−α)Cqi,j+α|Di,k−D

′
j,l|q

)p
Ti,j Tk,l

) 1
p

Bounds and convergence to finite samples [Vayer et al., 2020]

• The following inequalities hold:

FGW(µs, µt) ≥ (1− α)W(µA, µB)q

FGW(µs, µt) ≥ αGW(µX , µY )q

• Bound when X = Y:

FGW(µs, µt)
p ≤ 2W(µs, µt)

p

• Convergence of finite samples when X = Y with d = Dim(X ) +Dim(Ω) :

E[FGW(µ, µn)] = O
(
n−

1
d

)
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Computing FGW

Algorithm 1 Conditional Gradient (CG) for FGW

1: T(0) ← µXµ
>
Y

2: for i = 1, . . . , do

3: G← Gradient from Eq. (16) w.r.t. T(i−1)

4: T̃(i) ← Solve OT with ground loss G

5: τ (i) ← Line-search for loss with τ ∈ (0, 1)

6: T(i) ← (1− τ (i))T(i−1) + τ (i)T̃(i)

7: end for

Algorithmic resolution (p = 1)

T∗ = arg min
T∈P(µs,µt)

vec(T)TQvec(T)+vec((1−α)C)T vec(T), with Q = −2αD′⊗D

• Problem is a non-convex Quadratic Program (GW with an additional linear term).

• We use Conditional gradient [Ferradans et al., 2014] with network simplex solver.

• Convergence to a local minima [Lacoste-Julien, 2016].

• With entropic regularization, KL mirror descent descent [Peyré et al., 2016b].
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Application of FGW distance on structured data classification

Vector attributes AIDS BZR COX2 CUNEIFORM ENZYMES PROTEIN SYNTHETIC

FGW sp 99.44+/-0.47 85.12+/-4.15 77.23+/-4.86 76.67+/-7.04 71.00+/-6.76 74.55+/-2.74 100.00+/-0.00

FGW sp regul - 85.61+/-5.05 77.66+/-4.17 - 70.17+/-6.81 74.64+/-2.99 -

FGW wsp 99.55+/-0.35 84.88+/-4.34 78.09+/-3.81 - 69.50+/-7.30 75.09+/-2.34 -

FGWDMM sp - 84.39+/-5.48 76.81+/-4.30 - 61.67+/-7.19 75.00+/-2.59 -

FGWDMM wsp - 83.17+/-5.05 78.30+/-3.53 - 59.17+/-6.55 75.09+/-3.03 -

HOPPER all cv 99.50+/-0.59 84.15+/-5.26 79.57+/-3.46 32.59+/-8.73 45.33+/-4.00 71.96+/-3.22 90.67+/-4.67

PROPA all cv 98.45+/-1.06 79.51+/-5.02 77.66+/-3.95 12.59+/-6.67 71.67+/-5.63 61.34+/-4.38 64.67+/-6.70

PSCN k=10 99.80+/-0.24 80.00+/-4.47 71.70+/-3.57 25.19+/-7.73 26.67+/-4.77 67.95+/-11.28 100.00+/-0.00

PSCN k=5 99.85+/-0.23 82.20+/-4.23 71.91+/-3.40 24.81+/-7.23 27.33+/-4.16 71.79+/-3.39 100.00+/-0.00

Graph classification

• Classifiation accuracy on classical graph datasets.

• Comparison with state-of-the-art graph kernel approaches and Graph CNN.

• We use exp(−γFGW) as a non-positive kernel for an SVM [Loosli et al., 2015]

(FGW).

• Train Wassertsein Distance Measure Machine [Rakotomamonjy et al., 2018]

(FGWDMM).
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Application of FGW distance on structured data classification

Discrete attributes MUTAG NCI1 PTC

FGW raw sp 83.26+/-10.30 72.82+/-1.46 55.71+/-6.74

FGW wl h=2 sp 86.42+/-7.81 85.82+/-1.16 63.20+/-7.68

FGW wl h=2 sp regul 84.74+/-8.03 - 63.37+/-6.75

FGW wl h=4 sp 88.42+/-5.67 86.42 +/- 1.63 65.31+/-7.90

FGW wl h=4 sp regul 86.42+/-8.81 - 63.83+/-7.83

GK k=3 82.42+/-8.40 60.78+/-2.48 56.46+/-8.03

PSCN k=10 83.47+/-10.26 70.65+/-2.58 58.34+/-7.71

PSCN k=5 83.05+/-10.80 69.85+/-1.79 55.37+/-8.28

RW all cv 79.47+/-8.17 58.63+/-2.44 55.09+/-7.34

SP all cv 82.95+/-8.19 74.26+/-1.53 -

WL all cv 86.21+/-8.48 85.77+/-1.07 62.86+/-7.23

WL h=2 86.21+/-8.15 81.85+/-2.28 61.60+/-8.14

WL h=4 83.68+/-9.13 85.13+/-1.61 62.17+/-7.80

Without attribute IMDB-B IMDB-M

FGW raw sp 63.80+/-3.49 48.00+/-3.22

GK k=3 56.00+/-3.61 41.13+/-4.68

SP all cv 55.80+/-2.93 38.93+/-5.12

Graph classification

• Classifiation accuracy on classical graph datasets.

• Comparison with state-of-the-art graph kernel approaches and Graph CNN.

• We use exp(−γFGW) as a non-positive kernel for an SVM [Loosli et al., 2015]

(FGW).

• Train Wassertsein Distance Measure Machine [Rakotomamonjy et al., 2018]
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FGW barycenter

DD

DD

D

FGW barycenter p = 1, q = 2

• Estimate FGW barycenter using Frechet means (similar to [Peyré et al., 2016a]).

• Barycenter optimization solved via block coordinate descent (on T, D, {ai}i).

• Can chose to fix the structure (D) or the features {ai}i in the barycenter.

• aii, and D updates are weighted averages using T.
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FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples

Barycenter of noisy graphs

• We select a clean graph, change the number of nodes and add label noise and

random connections.

• We compute the barycenter on n = 15 and n = 7 nodes.

• Barycenter graph is obtained through thresholding of the D matrix.
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FGW for graphs based clustering
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Training dataset examples 

Centroids
iter

• Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10

graphs × 4 types of communities)

• k-means clustering using the FGW barycenter
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FGW baryenter for community clustering

Graph with communities Approximate Graph Clustering with transport matrix

Graph approximation and community clustering

min
D,µ

FGW(D,D0, µ, µ0)

• Approximate the graph (D0, µ0) with a small number of nodes.

• OT matrix give the clustering affectation.

• Works for signle and multiple modes in the clusters.
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FGW baryenter for community clustering

Graph with bimodal communities Approximate Graph Clustering with transport matrix

Graph approximation and community clustering
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GW and FGW for graph modeling

a

b

Gromov-Wasserstein distance [Memoli, 2011]

• Divergence between distributions across metric spaces.

• Can be used to measure similarity between graphs seen as distribution their

pairwise node relationship.

Fused Gromov-Wasserstein distance [Vayer et al., 2018]

• Model labeled structured data as joint structure/labels distributions.

• New versatile method for comparing structured data based on Optimal Transport

• New notion of barycenter of structured data such as graphs or time series

How to sue GW/FGW to model data variability in a dataset of graphs?
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Online Graph Dictionary Learning



Datasets of graphs

Dataset 1 Dataset 2

SBM with balanced communities {1, 2, 3}. Two communities of variable proportions.

• We have access to large datasets of graphs with variable number of nodes.

• How to model the variability of those graphs?

• A natural formulation is to use factorization.

• We propose to use a linear model for representing te graph associated to and

estimation of the linear basis : Dictionary learning.
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Linear model

Linear modeling of graphs

D ≈
∑
s∈[S]

wsDs (2)

• Approximate a given graph structure D as a non-negative weighted sum of

template graphs Ds.

• {Ds}s is the dictionary of templates that all have the same order (nb. of nodes).
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Gromov-Wasserstein Linear unmixing

Displacement

Probability
simplex
constraint

Probability
simplex
constraint

Displacement

Sparse linear unmixing with Gromov-Wasserstein

min
w∈ΣS

GW2
2

∑
s∈[S]

wsDs , D

− λ‖w‖22 (3)

• Estimate the linear representation on the simplex w minimizing the GW distance

w.r.t. the target graph D (non-negative unmixing).

• λ ∈ R+, negative quadratic regularization promotes sparsity on the simplex

[Li et al., 2016] while keeping a nonconvex QP.
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Solving the unmixing problem

Optimization problem

min
w∈ΣS

GW2
2

∑
s∈[S]

wsDs , D

− λ‖w‖22
• Non-convex Quadratic Program w.r.t. T and w.

• GW for fixed w already have an existing Frank-Wolfe solver.

• We proposed a Block Coordinate Descent algorithm

BCD Algorithm for sparse GW unmixing [Tseng, 2001]

1: repeat

2: Compute OT matrix T of GW2
2(D,

∑
s wsDs), with FW [Vayer et al., 2018].

3: Compute the optimal w given T with Frank-Wolfe algorithm.

4: until convergence

• Since the problem is quadratic optimal steps can be obtained for both FW.

• BCD convergence in practice in a few tens of iterations.
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Approximating GW in the linear embedding

GW Upper bond [Vincent-Cuaz et al., 2021]

Let two graphs of order N in the linear embedding
(∑

s w
(1)
s Ds

)
and

(∑
s w

(2)
s Ds

)
,

the GW divergence can be upper bounded by

GW2

∑
s∈[S]

w(1)
s Ds,

∑
s∈[S]

w(2)
s Ds

 ≤ ‖w(1) −w(2)‖M (4)

with M a PSD matrix of components Mp,q =
〈
DhDp,DqDh

〉
F

, Dh = diag(h).

Discussion

• The upper bound is the value of GW for a transport T = diag(h) assuming that

the nodes are already aligned.

• The bound is exact when the weights w(1) and w(2) are close.

• Solving GW with FW si O(N3 log(N)) at each iterations.

• Computing the Mahalanobis upper bound is O(S2) : very fast alterative to GW

for nearest neighbors retrieval.
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Graph Dictionary Learning

GDL optimization problem

min
{w(k)}k∈[K]

{Ds}s∈[S]

K∑
k=1

GW2
2

D(k),
∑
s∈[S]

w(k)
s Ds

− λ‖w(k)‖22 (5)

• On a dataset of K undirected graphs {D(k) ∈ SN(k)(R)}k∈[K].

• We want to estimate simultaneously the unmixing w(k) of each graphs and the

optimal dictionary {Ds}s∈[S].

• Very similar to classical DL (Non-negative Matrix Factorization) approach but

with GW as a data fitting term.

• We propose to solve it an adaptation of the online algorithm [Mairal et al., 2009]

Stochastic/Online update [Vincent-Cuaz et al., 2021]

1: Sample a minibatch of graphs B := {D(k)}k∈B .

2: Compute {(w(k),T (k))}k∈[B] from solving B independent unmixings.

3: Compute the gradient ∇̃Ds
on the minibatch with fixed {(w(k),T (k))}k∈[B].

4: Projected gradient step , ∀s ∈ [S],Ds ← ProjSN (R)(Ds − ηC∇̃Ds
)
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GDL Extensions

GDL on labeled graphs

• For datasets with labeled graphs, on can learn simultaneously a dictionary of the

structure {Ds}s∈[S] and a dictionary on the labels/features {Fs}s∈[S].

• Data fitting is Fused Gromov-Wasserstein distance FGW, same stochastic

algorithmm.

Dictionary on weights

min
{(w(k),v(k))}k
{(Ds,hs)}s

K∑
k=1

GW2
2

(
D(k),

∑
s

w(k)
s Ds,h

(k),
∑
s

v(k)
s hs

)
− λ‖w(k)‖22 − µ‖v(k)‖22

• We model the graphs as a linear model on the structure and the node weights

(D(k),h(k)) −→

(∑
s

w(k)
s Ds,

∑
s

v(k)
s hs

)

• This allows for sparse weights h so embedded graphs with different order.

• We provide in [Vincent-Cuaz et al., 2021] subgradients of GW w.r.t. the mass h.
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Experiments - Unsupervised representation learning

• Stochastic block model with {1, 2, 3} blocks
Dataset Learned atoms

Atom 1 (matrix)

0.4

0.6

0.8

1.0
Atom 2 (matrix)

0.25

0.50

0.75

Atom 3 (matrix)

0.00

0.25

0.50

0.75

Atom 1 (graph) Atom 2 (graph) Atom 3 (graph)

Embedding space
GDL unmixing w(k) with = 0.001

Class 1

Class 2

Class 3

GDL unmixing w(k) with = 0

Class 1

Class 2

Class 3

Examples

1

1

1

2

2

2

3

3

3
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Experiments - Unsupervised representation learning

w= [0.0, 1.0] w= [0.2, 0.8] w= [0.4, 0.6] w= [0.6, 0.4] w= [0.8, 0.2] w= [1.0, 0.0]

Atom 1 Atom 2
Interpolation

Learned Dictionary: Interpolation ∼ 1D Manifold

Dataset
• Stochastic block model with 2 blocks

and varying proportions of block size.

• GDL with 2 atoms can recover the

extreme points.

• Linear interpolation recover a

continuous variation of proportion.
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Experiments - Unsupervised representation learning

Comparison of fixed and learned weights dictionaries

• Graph taken from the IMBD dataset.

• Show original graph and representation after projection on the embedding.

• Uniform weight h has a hard time representing a central node.

• Estimated weights h̃ recover a central node.

• In addition some nodes are discarded with 0 weight (graphs can change order).
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Experiments - Clustering benchmark

Clustering Experiments on real datasets

• Different data fitting losses:

• Graphs without node attributes : Gromov-Wasserstein.

• Graphs with node attributes (discrete and real): Fused Gromov-Wasserstein.

• We learn a dictionary on the dataset and perform K-means in the embedding

using the Mahalanobis distance approximation.

• Compared to GW factorization [Xu, 2020] and spectral clustering.

• Similar performance for supervised classification (using GW in a kernel).
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Experiments - Online Learning

• Streaming graphs: Stochastic update for each new incoming graph

• Dataset: TWITCH-EGOS

- 120.000+ graphs

- 2 classes

- shared hub structure

Data A Data B

• Simulated stream: data A (class 1) → data B (class 2)
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Experiments - Online Learning

• Streaming graphs: Stochastic update for each new incoming graph

• Dataset : TRIANGLES

- 30.000+ labeled graphs

- 10 classes

• Simulated stream: data A (4 classes) → data B (3 classes) → data C (3 classes)
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Conclusion

Gromov-Wasserstein family for graph modeling

• Graphs modelled as distributions, GW can measure their similarity.

• Extensions of GW for labeled graphs and Frechet means can be computed.

• Nonlinear and linear dictionaries of graphs using GW provide a good modeling.

Open questions

• Stability of the GW plan to perturbations of D (related to the GDL upper bound).

• Use GW as a ”kernel” for structured prediction ( GW barycenters).

• Weights on the nodes are important but rarely available : relax the constraints

[Séjourné et al., 2020] or even remove one of them (WIP).
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Thank you

Python code available on GitHub:

https://github.com/PythonOT/POT

• OT LP solver, Sinkhorn (stabilized, ε−scaling, GPU)

• Domain adaptation with OT.

• Barycenters, Wasserstein unmixing.

• Wasserstein Discriminant Analysis.

Tutorial on OT for ML:

http://tinyurl.com/otml-isbi

Papers available on my website:

https://remi.flamary.com/

Post doc available in: Palaiseau (France)
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Séjourné, T., Vialard, F.-X., and Peyré, G. (2020).
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