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Optimal Transport and
Gromov-Wasserstein



Optimal transport with discrete distributions

Distributions Matrix C OT matrix y

[ Source ps
I Target p

Kantorovitch formulation : OT Linear Program
When j1s = 377 a;dxs and py = Y700, bidy

Wy (s, pe) = min {<T7 Clr= ZTi,jCi,j}

TEM (s, pt) g
where C is a cost matrix with ¢; ; = ¢(x},x5) = ||x] — x4||” and the constraints are
(s, pe) = {T € ()™ T1,, = a, T 1, = b}
e Linear program with nsn; variables and ns 4+ n; constraints.
e Solving the OT problem with network simplex is O(n®log(n)) for n = ns = n,.

® Wy (s, pe) is called the Wasserstein distance (EMD for p = 1). 437
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Optimal transport with discrete distributions

Distributions Matrix C OT matrix with samples
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Kantorovitch formulation : OT Linear Program
When ps = 377 aidxs and py = 3700 bidye

W (ps, pe) = min {(T,C)F = ZTi,jCi,j}
2%

Tell(ps,pt)
where C is a cost matrix with ¢; ; = c(x},x) = [|x] — x[|” and the constraints are
(jt, pe) = {T € (RT)™ ™| T1,, = a, T 1,, = b}
e Linear program with nsn; variables and ns 4+ n; constraints.
e Solving the OT problem with network simplex is O(n®log(n)) for n = ns = n.

o Wy (s, pe) is called the Wasserstein distance (EMD for p = 1). 437



Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2

@ Source s
@® Target

Entropic regularization [Cuturi, 2013]

Welpros pe) = Tel'rll(liit?,ut) (T.C)p +e ; Tilog Tis

e Regularization with the negative entropy —H (T).

e Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].

e Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.

e Loss and OT matrix are differentiable and have better statistical properties
[Genevay et al., 2018].

e Classical OT needs distributions lying in the same space — Gromov-Wasserstein.
5/37



Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2
° t X
°
oq °
e go0° @e

@ Source s

: @ Target u;
)
L) -} ‘
(]
° “\
e ©

Entropic regularization [Cuturi, 2013]

Wolproi) = _min | (T,0)p+ ¢ Ti, log T

TEel(ps,pt) i
i

Regularization with the negative entropy —H (T).
e Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].

Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.

e Loss and OT matrix are differentiable and have better statistical properties
[Genevay et al., 2018].

e Classical OT needs distributions lying in the same space — Gromov-Wasserstein.
5/37



Gromov-Wasserstein divergence

ldx (v,2") — dy (y,y")

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

1
P
GWp (s, :( mnin D; . — Dj pTi,r‘Tk’l>
p(fts, it) Ten%w)i%ll : iilP T

with s = 37, aidxs and e =37, bjézg and D; i, = [|x — %3, Dj; = [|Ix5 — x|

e Distance between metric measured spaces : across different spaces.
e Search for an OT plan that preserve the pairwise relationships between samples.
e Invariant to isometry in either spaces (e.g. rotations and translation).
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Solving the Gromov Wasserstein optimization problem

aGWh (s, =  min Dy — D y|PTy The
p(ll Mt) TEMun ) ”zk:l ‘ J,l| J

with ps = 37, aidxs and py = 3, bj(sz? and D; i, = [|x} — %3, D}, = ||Ix5 — x|
Optimization problem

e Quadratic Program (Wasserstein is a linear program).

e Nonconvex, NP-hard, related to Quadratic Assignment Problem (QAP).

Optimization algorithm
e Large problem and non convexity forbid standard QP solvers.

e Local solution can be obtained with conditional gradient (Frank-Wolfe)
[Vayer et al., 2018] (each iteration is an OT problems).

e Gromov in 1D has a close form (solved in discrete with a sort) [Vayer et al., 2019].

e Can be regularized by entropy similarly to classical OT.
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Entropic Gromov-Wasserstein

Optimization Problem [Peyré et al., 2016a]

OWE (o, pe) = min > Dy — Diy[PTy 3 Teu+€ > TijlogTi; (1)
Tel(us,nt) | Tl i,j

with ps = 37, aidxs and py = 37, bj5m§ and D, = ||x — x; ||, Dj,; = [|x5 — x{||

J

e Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic G\ [Peyré et al., 2016a]
e Problem (1) can be solved using a KL mirror descent.

e This is equivalent to solving at each iteration ¢

T(H_l) = ’1:'[‘1161% <T, G(f)>F +e€ Z Tiﬁj lOg Ti’]’
2,7

Where Gitj) =2, 1Dk — D;A”T,itl) is the gradient of the GW loss at previous
point T,
e Problem above can be solved using a Sinkhorn-Knopp algorithm of entropic OT.

e Very fast approximation exist for low rank distances [Scetbon et al., 2021].
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Gromov-Wasserstein between graphs

oo o X XX X X

G x.
X
X 4 Adjacency
matrix

Shortest path
matrix

Modeling the graph structure with a pairwise matrix D
o An undirected graph G := (V,E) is defined by V = {x;}icnj set of the N nodes
and E = {(xi,x;)|xi ¢ X} set of edges.
e Structure represented as a symmetric matrix D of relations between the nodes.
e Possible choices : Adjacency matrix (used in this study), Laplacian matrix,

Shortest path matrix.

Graph as a distribution (D, h) ) o
e Graph represented as a discrete distribution

px =32 hiba; .
e The positions x; are implicit and represented
as the pairwise matrix D.

?;:: hi @xl e h; are the masses on the nodes of the graphs

(uniform by default). 037



Applications of GW [Solomon et al., 2016]

Shape matching between 3D and 2D surfaces

Source Targets

Multidimensional scaling (MDS) of shape collection

A
e -

OO
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Fused Gromov-Wasserstein



Structured data

Structured data

e Some structured data can be viewed as a combination of features informations
linked within each other by some structural information.

e Can be seen as a distribution on a joint feature/structure space.
e Example : labeled graph.
Meaningful distances on labeled structured data
e Us both features (labels) and structure (graph).
e Allows for comparison, classification.
e Data science (statistics, means, concentration).
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Structured data
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Structured data

e Some structured data can be viewed as a combination of features informations
linked within each other by some structural information.

e Can be seen as a distribution on a joint feature/structure space.
e Example : labeled graph.
Meaningful distances on labeled structured data
e Us both features (labels) and structure (graph).
o Allows for comparison, classification.

e Data science (statistics, means, concentration).
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Structured data as distributions

xT; ::;i } naA = Z@ hiéai

} Hx = Zq hida,

®° 00 ; oot
c0@e h'L

Graph data representation
n
H = Z h’i,é(miai)
i=1

e Nodes are weighted by their mass h;.
e But no common metric between the structure points z; of two different graphs.
e Features values a; can be compared through the common metric
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Fused Gromov-Wasserstein distance

X

Fused Gromov Wasserstein distance
ps =D i hibuya; and py = Z] 1950y;.b;

1

P
FOW, 0.a(D, D', 115, pz) = (Tel%nn : § (1=a)C! ;+a|D; ,—Dj,|*) T ; Tk,l)
HssHt)
0,5kl

with D; s = [lz; — xx|| and D}, = |ly; — will and Cy ; = [|a; — by]|
e Parameters ¢ > 1, Vp > 1.

e « € [0,1] is a trade off parameter between structure and features.
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FGW Properties (1)

/ . / P
FGW? (D, D' s, i) = Terrl?;il«,m) .zk:l ((1 — a)Cﬁj + a|D; , — DN|‘1) Ti5 Th
KIVELS)
Metric properties [Vayer et al., 2020]
e FGW defines a metric over structured data with measure and features
preserving isometries as invariants.
e FGW is a metric for ¢ = 1 a semi metric for ¢ > 1, Vp > 1.

e The distance is nul iff :

® There exists a Monge map T'#/s = pit.
e Structures are equivalent through this Monge map (isometry).

e Features are equal through this Monge map.
Other properties for continuous distributions
e Interpolation between W (ae = 0) and GW (a = 1) distances.

e Geodesic properties (constant speed, unicity).
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FGW Properties (2)

1

FgWP;Q,a(DaD/aﬂsvﬂt) = ( min Z ((1ia)cg,j+a|Di>k’7D;,l‘q)pTiyj Tkal) ’

Tell(ps,
(pspt) il

Bounds and convergence to finite samples [Vayer et al., 2020]

e The following inequalities hold:

FGW(ps, pie) > (1 — a)WV(pa, ps)?
FOGW (s, pir) > aGW(pux, py)?

e Bound when X = ):
FOW (s, pn)” < 2W (s, e )”

e Convergence of finite samples when X' = ) with d = Dim(X) + Dim(2) :

EFGW (1, 1)) = O (n# )
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Computing FGW

Algorithm 1 Conditional Gradient (CG) for FGW
1 TO  puxpy
2. fori=1,..., do
3 G « Gradient from Eq. (16) w.r.t. T¢~V
4. T + Solve OT with ground loss G
5: 7 ¢« Line-search for loss with 7 € (0,1)
6 T (1—7O)ypi-1 4 OF0
7. end for

Algorithmic resolution (p = 1)

T* = argmin  vec(T)” Qvec(T)+vec((1—a)C) vec(T), with Q = —-2aD’®D

TEP(us,it)

e Problem is a non-convex Quadratic Program (GW with an additional linear term).
e We use Conditional gradient [Ferradans et al., 2014] with network simplex solver.
e Convergence to a local minima [Lacoste-Julien, 2016].

e With entropic regularization, KL mirror descent descent [Peyré et al., 2016b]. 1637



Application of FGW distance on structured data classification

VECTOR ATTRIBUTES AIDS BZR COX2 CUNEIFORM ENZYMES PROTEIN SYNTHETIC
FGW sp 99.44+/-0.47 85.12+/-4.15 77.23+/-4.86 76.67+/-7.04  71.00+/-6.76 74.55+/-2.74  100.00+/-0.00
FGW sP REGUL - 85.61+/-5.05 77.66+/-4.17 - 70.17+/-6.81 -
FGW wsp 99.55+/-0.35 8'—1.’8‘#/—4.34 78.09+/-3.81 - 69.5 U+/ 7.30 -
FGWDMM sp - 84.394/-5.48  76.81+/- - 7.19 -
FGWDMM wsp - 83.17+/-5 (i' 78.30+/-3.53 - 59. ll+/ 6.55 -
HOPPER ALL cv 99.50+/-0.59 8-1 154/-5.26  79.57+/-3.46 45.334/-4.00 71.96+/-3.22  90.67+/-4.67
PROPA ALL cv 98.45+/-1.06 51+/-5.02 77.66+/-3.95 71 67+/ -5.63 61.34+/-4.38  64.67+/-6.70
PSCN k=10 99.804/-0.24 8() nn+/ TL704/-3.1 67.954/-11.28 100.00+/-0.00
PSCN k=5 99.85+4/-0.23  82.20+ /- 71.914/-3.40 71.79+/-3.39  100.00+/-0.00

Graph classification

Classifiation accuracy on classical graph datasets.

Comparison with state-of-the-art graph kernel approaches and Graph CNN.

We use exp(—yFGW) as a non-positive kernel for an SVM [Loosli et al., 2015]

(FGW).

Train Wassertsein Distance Measure Machine [Rakotomamonjy et al.,

(FGWDMM).

2018
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Application of FGW distance on structured data

classification

DISCRETE ATTRIBUTES MUTAG

NCI1

PTC

WITHOUT ATTRIBUTE

IMDB-B IMDB-M

FGW Rraw sp 83.26+/-10.30 72.82+/-1.46 55.714/-6.74
FGW wL H=2 sP 86.42+/-7.81  85.82+/-1.16 63.204/-7.68
FGW 84.744/-8.03 - 63.37+/-6.75
FGW 88.424+/-5.67  86.42 +/- 1.63  65.314/-7.90
FGW wL H= 4 SP REGUL 86.42+/-8.81 - 63.83+/-7.83
GK k=3 82.42+4/-8.40  60.78+/-2.48

PSCN k=10 8% 47+4/-10.26  70.65+/-2.58

PSCN k=5

RW ALL cv 79. 4/+/ 8.17

SP ALL cv 82.95+/-8.19
WL ALL ¢V 86.21+/-8.48
WL H=2 86.214/-8.15
WL =4 83.68+/-9.13

74.26+/-1.53
85.77+/-1.07
81.85+/-2.28
85.13+/-1.61

62.86+/-7.23
61.60+/-8.14
62.17+/-7.80

FGW RAW sp
GK k=3
SP ALL cV

63.80+/-3.49 48.00+/-3.22
56.00+/-3.61 41.13+/-4.68
55.80+/-2.93  38.93+/-5.12

Graph classification

Classifiation accuracy on classical graph datasets.

Comparison with state-of-the-art graph kernel approaches and Graph CNN.
We use exp(—yFGW) as a non-positive kernel for an SVM [Loosli et al., 2015]

(FGW).

Train Wassertsein Distance Measure Machine [Rakotomamonjy et al., 2018]

(FGWDMM).
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FGW barycenter

Euclidean barycenter FGW barycenter
A (D2, p2)
Ty T3 (Dhﬂl) (D3»,U/S)
min Y, Az — i 2 pcmin Y NFOND:D. )
xr )

FGW barycenter p =1,¢ =2
e Estimate FGW barycenter using Frechet means (similar to [Peyré et al., 2016a]).
e Barycenter optimization solved via block coordinate descent (on T, D, {a;};).
e Can chose to fix the structure (D) or the features {a;}; in the barycenter.
e a;;, and D updates are weighted averages using T.
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FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples

Barycenter of noisy graphs
e We select a clean graph, change the number of nodes and add label noise and
random connections.

e We compute the barycenter on n = 15 and n = 7 nodes.

e Barycenter graph is obtained through thresholding of the D matrix.
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FGW barycenter on labeled graphs

2 oER Y A B
Lo i hd

Barycenter of noisy graphs
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FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples Barycenter

e We select a clean graph, change the number of nodes and add label noise and
random connections.

Barycenter of noisy graphs
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e Barycenter graph is obtained through thresholding of the D matrix.
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FGW for graphs based clustering

Centroids

Training dataset examples

cluster 1

cluster 2

cluster 3

cluster 4

e Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10
graphs x 4 types of communities)

e k-means clustering using the F'GW barycenter
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FGW baryenter for community clustering

Graph with communities Approximate Graph Clustering with transport matrix

Graph approximation and community clustering
min  FGW(D, Do, u, f10)
D,p

e Approximate the graph (Do, 110) with a small number of nodes.
e OT matrix give the clustering affectation.

e Works for signle and multiple modes in the clusters.
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FGW baryenter for community clustering

Graph with bimodal communities Approximate Graph Clustering with transport matrix

Graph approximation and community clustering
min  FGW(D, Do, u, f10)
D,p

e Approximate the graph (Do, 110) with a small number of nodes.
e OT matrix give the clustering affectation.

e Works for signle and multiple modes in the clusters.
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GW and FGW for graph modeling

€y it

ldx (2,2") — dy(y.y")

Gromov-Wasserstein distance [Memoli, 2011]
e Divergence between distributions across metric spaces.

e Can be used to measure similarity between graphs seen as distribution their
pairwise node relationship.

Fused Gromov-Wasserstein distance [Vayer et al., 2018]

e Model labeled structured data as joint structure/labels distributions.
e New versatile method for comparing structured data based on Optimal Transport

e New notion of barycenter of structured data such as graphs or time series

How to sue GW/FGW to model data variability in a dataset of graphs?
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Online Graph Dictionary Learning




Datasets of graphs

Dataset Dataset 2

P

SBM with balanced communities {1,2,3}.  Two communities of variable proportions.

e We have access to large datasets of graphs with variable number of nodes.
e How to model the variability of those graphs?

A natural formulation is to use factorization.

e We propose to use a linear model for representing te graph associated to and
estimation of the linear basis : Dictionary learning.
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Linear model

-
Adjacency i
: w W W ~ -
matrices ! 2 2 =~

~ ] Ty
Graph atoms Graph sample

ol

Corresponding
graphs 3 s,

Linear modeling of graphs

D= Z ws Dy (2)
s€[S]

e Approximate a given graph structure D as a non-negative weighted sum of
template graphs Dj.

e {D.} is the dictionary of templates that all have the same order (nb. of nodes).
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Gromov-Wasserstein Linear unmixing

el - IO T,
/ Wy, W,,W . :
k ) - - hea ‘
Probability " v
simplex Graph atoms Graph sample

constraint

Displacement

papea

Sparse linear unmixing with Gromov-Wasserstein

min  GW3 [ > w,D;, D | - \|wlf} (3)

wex
o s€(S]

e Estimate the linear representation on the simplex w minimizing the GW distance
w.r.t. the target graph D (non-negative unmixing).

e )\ € R, negative quadratic regularization promotes sparsity on the simplex

[Li et al., 2016] while keeping a nonconvex QP. 25 /37
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Gromov-Wasserstein Linear unmixing

Displacement
argmin d( W,

W1,Wy,W3

Probability
simplex Graph atoms Graph sample
constraint -

Sparse linear unmixing with Gromov-Wasserstein
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wex
o s€(S]

e Estimate the linear representation on the simplex w minimizing the GW distance
w.r.t. the target graph D (non-negative unmixing).

e )\ € R, negative quadratic regularization promotes sparsity on the simplex

[Li et al., 2016] while keeping a nonconvex QP. 25 /37



Solving the unmixing problem

Optimization problem

. 2 - 2
min - GW;3 > w.Ds, D | - \wl|3
s€[S]
e Non-convex Quadratic Program w.r.t. T and w.
e GW for fixed w already have an existing Frank-Wolfe solver.

e We proposed a Block Coordinate Descent algorithm

BCD Algorithm for sparse GW unmixing [Tseng, 2001]
1. repeat
2. Compute OT matrix T' of GW3(D, ", w,D;), with FW [Vayer et al., 2018].
3:  Compute the optimal w given T with Frank-Wolfe algorithm.
4. until convergence

e Since the problem is quadratic optimal steps can be obtained for both FW.

e BCD convergence in practice in a few tens of iterations.
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Approximating GW in the linear embedding

GW Upper bond [Vincent-Cuaz et al., 2021]
Let two graphs of order N in the linear embedding <2:s wgl)ﬁs> and (ZS wg)ﬁ) ,
the GW divergence can be upper bounded by

owe [ Y wDy, > w?PDs | < W - w?|um (4)
s€[S] s€[S]

with M a PSD matrix of components M), = (DrD,, ﬁth>F, Dy, = diag(h).
Discussion

e The upper bound is the value of GW for a transport 7' = diag(h) assuming that
the nodes are already aligned.

e The bound is exact when the weights w® and w® are close.
e Solving GW with FW si O(N?®log(N)) at each iterations.

e Computing the Mahalanobis upper bound is O(S?) : very fast alterative to GW
for nearest neighbors retrieval.
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Graph Dictionary Learning

GDL optimization problem
K

min > gw; [ DY, " wD, | - AW (5)
{Wﬁ")}ke[m k=1 s€[S]
{Ds}seis)

e On a dataset of K undirected graphs {D"*) € Sy ) (R) e[k

e \We want to estimate simultaneously the unmixing w®) of each graphs and the
optimal dictionary {D,}s¢[s].-

e Very similar to classical DL (Non-negative Matrix Factorization) approach but
with GW as a data fitting term.

e We propose to solve it an adaptation of the online algorithm [Mairal et al., 2009]

Stochastic/Online update [Vincent-Cuaz et al., 2021]
1: Sample a minibatch of graphs B := {D®"},cp .
2: Compute {(w(k>,T<k))}ke[B] from solving B independent unmixings.
3: Compute the gradient ﬁfs on the minibatch with fixed {(w™®, T™)}, ¢ 5.
4. Projected gradient step , Vs € [S], Ds < Projs, @) (Ds — 7]0655)
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GDL Extensions

GDL on labeled graphs

e For datasets with labeled graphs, on can learn simultaneously a dictionary of the
structure {D.};c(s] and a dictionary on the labels/features {F.}¢[g).-

e Data fitting is Fused Gromov-Wasserstein distance FGW, same stochastic
algorithmm.

Dictionary on weights

K
win S 0w (DY, wl DL A®, v ) - Mw® [ — ulv
{(wﬁ),vi(k))}k k=1 s s
{(Ds,hs)}s

e \We model the graphs as a linear model on the structure and the node weights

(D™ R®) <Z w®D,, 3 v,i.’“’hs>

e This allows for sparse weights h so embedded graphs with different order.
e We provide in [Vincent-Cuaz et al., 2021] subgradients of GW w.r.t. the mass h.
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Experiments - Unsupervised representation learning

e Stochastic block model with {1, 2,3} blocks
Datase Learned atoms

7 Atom 1 (matrix) Atom 2 (matrix) Atom 3 (matrix)

10
0.75
0.8
0.50)
0.6
0.25)
04 | |

Atom 1 (graph) Atom 2 (graph) Atom 3 (graph)

Y I

¢’

Embedding space

GDL unmixing w® with A =0 Examples GDL unmixing w® with A = 0.001

GW graph/Mahalanobis (corr=0.96)

Class 1
Class 2
Class 3

IS

w

~

Mahalanobis in the embedding

o =
L)
io
J
°

0.0 0.2 0.4 0.6 0.8
GW between graphs
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Experiments - Unsupervised representation learning

w=[0.0,1.0] w=[0.2,0.8] w=[0.4,0.6] w=[0.6,0.4] w=[0.8,0.2] w=[1.0,0.0]

,.14 %\Vﬁ%&

Atom 1 Atom 2
Interpolation

Learned Dictionary: Interpolation ~ 1D Manifold

Dataset

e Stochastic block model with 2 blocks
and varying proportions of block size.

e GDL with 2 atoms can recover the
extreme points.

e Linear interpolation recover a
continuous variation of proportion.
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Experiments - Unsupervised representation learning

Graph from dataset Model unif. h (GW=0.09) Model est. h (GW=0.08)

Comparison of fixed and learned weights dictionaries
e Graph taken from the IMBD dataset.
e Show original graph and representation after projection on the embedding.
e Uniform weight h has a hard time representing a central node.

Estimated weights b recover a central node.

e In addition some nodes are discarded with 0 weight (graphs can change order).

32/37



Experiments - Clustering benchmark

Table 1. Clustering: Rand Index computed for benchmarked approaches on real datasets.

no attribute discrete attributes real attributes
models IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES PROTEIN
GDL(ours) | 51.64(0.59) | 55.41(0.20) | 70.89(0.11) | 51.90(0.54) | 66.42(1.96) | 59.48(0.68) | 66.97(0.93) | 60.49(0.71)
GWF-r 51.24(0.02) | 55.54(0.03) - - 52.42(2.48) 56.84(0.41) | 72.13(0.19) | 59.96(0.09)

GWF-f | 5047(034) | 54.01(0.37) - - 51.65(296) | 52.86(0.53) | 71.64(0.31) | 58.89(0.39)
GW-k 50.32(0.02) | 53.65(0.07) | 57.56(1.50) | 50.44(0.35) | 56.72(0.50) | 52.48(0.12) | 66.33(1.42) | 50.08(0.01)
sC 50.1100.10) | 544009.45) | 50.82(2.71) | 50.45(0.31) | 42.73(7.06) | 4132(6.07) | 70.74(10.60) | 49.92(1.23)

Clustering Experiments on real datasets

e Different data fitting losses:

e Graphs without node attributes : Gromov-Wasserstein.
e Graphs with node attributes (discrete and real): Fused Gromov-Wasserstein.

e We learn a dictionary on the dataset and perform K-means in the embedding
using the Mahalanobis distance approximation.

e Compared to GW factorization [Xu, 2020] and spectral clustering.

e Similar performance for supervised classification (using GW in a kernel).
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Experiments - Online Learning

e Streaming graphs: Stochastic update for each new incoming graph
e Dataset: TWITCH-EGOS

- 120.000+ graphs
- 2 classes

- shared hub structure

e Simulated stream: data A (class 1) — data B (class 2)

GW loss on streaming TWITCH-EGOS graphs 0.200 Avg. GW error on Datasets A/B
. 0.150
o —— Data A
g 0.125 4 —— DataB
— Event
© 01004 %
N
N
0.075 e
]
; 0.050
0 20000 40000 60000 80000 100000 120000 0 20000 40000 60000 80000 100000 120000

Iterations Iterations
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Experiments - Online Learning

e Streaming graphs: Stochastic update for each new incoming graph
e Dataset : TRIANGLES
- 30.000+ labeled graphs

- 10 classes

e Simulated stream: data A (4 classes) — data B (3 classes) — data C (3 classes)

FGW loss on streaming TRIANGLES graphs 10 Avg. FGW error on Datasets A/B/C
Stream C N |StreamA ‘ |Stream B‘ ‘Stream C‘
084 ~ A
“» = T~ ~-
8 100 —— Loss g 0.6
> —— Avg. loss = e
9 —— Events © 0.44 —— DataA ——
jrd -=]
—— Data B
0.24 —— DataC
— Events
1071 + T T T T T 0.0 T T T
5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Iterations Iterations
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Conclusion

Examples GDL unmixing w'® with A = 0.001
2 . Class 1

Oy

Gromov-Wasserstein family for graph modeling

|dx (z,2") = dy(

(R

u.y)

e Graphs modelled as distributions, GVV can measure their similarity.
e Extensions of GW for labeled graphs and Frechet means can be computed.

e Nonlinear and linear dictionaries of graphs using GW provide a good modeling.

Open questions
o Stability of the GW plan to perturbations of D (related to the GDL upper bound).
o Use GW as a "kernel” for structured prediction ( GV barycenters).

o Weights on the nodes are important but rarely available : relax the constraints
[Séjourné et al., 2020] or even remove one of them (WIP).

36/37



Thank you

Python code available on GitHub:
https://github.com/Python0T/POT
e OT LP solver, Sinkhorn (stabilized, e—scaling, GPU)

o Domain adaptation with OT.
e Barycenters, Wasserstein unmixing.

e Wasserstein Discriminant Analysis.

"@6%0@ g0

Tutorial on OT for ML: -
http://tinyurl.com/otml-isbi / :

—

08293380@ﬁ’cﬁmv:m‘r_o\cX

o

Papers available on my website:

B0 enge gL GG

=

iy A\
https://remi.flamary.com/ Vi \ )
' o
. . . “q e wcoa = *‘ %' °
Post doc available in: Palaiseau (France) %, 05 CFRY
(]
° “ﬂ Pdo=p -3.":403
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