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Data as vector in high dimensional space

e Most datasets can be expressed as samples in a vector space.
e The samples correspond to position in this space.
e When examples have a label, one may want to perform classification.

e Training a classifier f corresponds to finding a partition of this space.
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Data as vector in high dimensional space

e Most datasets can be expressed as samples in a vector space.

e The samples correspond to position in this space.

e When examples have a label, one may want to perform classification.

e Training a classifier f corresponds to finding a partition of this space.
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Supervised learning
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Traditional supervised learning : empirical risk minimization
We week for a predictor f minimizing

mfin{ E Ly, f(x Zﬁy], (x5)) } (1)

(x,y)~P

e Well known generalization results for predicting on new data.

e Loss is usually L(y, f(x)) = (y — f(x))? for least square regression and is

L(y, f(x)) = max (0,1 — yf(x))? for squared Hinge loss SVM. 120
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Domain Adaptation problem

Amazon oLsR
] ; ) W h W

GO o
ah - b,

ility Distributi i over the

Our context

e Classification problem with data coming from different sources (domains).
e Distributions are different but related.
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Unsupervised domain adaptation problem
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Source Domain Target Domain
Problems
o Labels only available in the source domain, and classification is conducted in the
target domain.
o Classifier trained on the source domain data performs badly in the target domain
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Optimal Transport for Domain
Adaptation



The origins of optimal transport

886° MEmoirEs DE L'AcADEMIE ROYALE
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Problem [Monge, 1781]

e How to move dirt from one place (déblais) to another (remblais) while minimizing
the effort ?

e Find a mapping T between the two distributions of mass (transport).

e Optimize with respect to a displacement cost ¢(x,y) (optimal).
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The origins of optimal transport
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Problem [Monge, 1781]

e Find a mapping T between the two distributions of mass (transport).

e Optimize with respect to a displacement cost ¢(z,y) (optimal).
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Optimal transport (Monge formulation)

Distributions Quadratic cost c(x, y) = |x — y|?
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Probability measures 11 and ji on and a cost function ¢ : Qg x Q; — RT,

e The Monge formulation [Monge, 1781] aim at finding a mapping 17" : Q5 —
inf / c(x, T(x))ps (x)dx (2)
THps=pt Q.
e Non-convex optimization problem, mapping does not exist in the general case.

[Brenier, 1991] proved existence and unicity of the Monge map for
c(z,y) = ||z — y||* and distributions with densities.
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Kantorovich relaxation

Y1
Y2

Y3

e Leonid Kantorovich (1912-1986), Economy nobelist in 1975
e Focus on where the mass goes, allow splitting [Kantorovich, 1942].

e Applications mainly for resource allocation problems
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Kantorowitch formulation : OT Linear Program
When ps = 377" | aidxs and py = 37| bidye

Yo =argmin  $ (v,C)p = Yijciy
EP i

where C is a cost matrix with ¢; ; = ¢(x{,x}) and the marginals constraints are
P={ve®)""| vl =a,9 1., =b}

Linear program with nsn; variables and ns + n; constraints. Demo
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Optimal transport with discrete distributions
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Transporting the discrete samples

Distributions Classt OT Reg. Entropic OT
° 8 'Y
°
og °
LI ® to
@ Source s
g @ Target u;
% o
®g
°
° “\
e ©

Barycentric mapping [Ferradans et al., 2014]
fﬁ,o (x;) = argmin Z’yo(i,j)c(x, x5). (3)

J

The mass of each source sample is spread onto the target samples (line of ~,).

The mapping is the barycenter of the target samples weighted by v,

e Closed form solution for the quadratic loss.

Limited to the samples in the distribution (no out of sample).

e Trick: learn OT on few samples and apply displacement to the nearest point.
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Histogram matching in images

Pixels as empirical distribution [Ferradans et al., 2014]
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Histogram matching in images

Image colorization [Ferradans et al., 2014]

Original X©

Original Y°

Proposed method

12/20



Seamless copy in images

source target

Poisson image editing [Pérez et al., 2003]
e Use the color gradient from the source image.

e Use color border conditions on the target image.

e Solve Poisson equation to reconstruct the new image.
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Seamless copy with gradient adaptation [Perrot et al., 2016]
e Transport the gradient from the source to target color gradient distribution.

e Solve the Poisson equation with the mapped source gradients.

e Better respect of the color dynamic and limits false colors.
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Seamless copy with gradient adaptation
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https://github.com/ncourty/PoissonGradient

Optimal transport for domain adaptation

Dataset Optimal transport Classification on transported samples

+
+ .
g N Class1
O % 0O Class2
Samples X}

Samples T, (x})
mples x!

— Classifier on T, (x?)

Samples x!
Classifier onx;

Assumptions
e There exist a transport in the feature space T between the two domains.

e The transport preserves the conditional distributions:
Ps(ylxs) = Fi(y|T(xs))-

3-step strategy [Courty et al., 2016]
1. Estimate optimal transport between distributions.

2. Transport the training samples with barycentric mapping .

3. Learn a classifier on the transported training samples.
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Visual adaptation datasets

USPS MNIST PIEOS PIEO7 PIE09 PIE29 Calltech Amazon DSLR Webcam

e .
_hi

Shatt™

BRRR
EEE=

C T

=4

@Ol jE|

e alEp
£ ‘
I'ETd

LrLLE
L= L~k

™

Datasets

e Digit recognition, MNIST VS USPS (10 classes, d=256, 2 dom.).
e Face recognition, PIE Dataset (68 classes, d=1024, 4 dom.).
e Object recognition, Caltech-Office dataset (10 classes, d=800/4096, 4 dom.).

Numerical experiments
e Comparison with state of the art on the 3 datasets.

e OT works very well on digits and object recognition.

e Works well on deep features adaptation and extension to semi-supervised DA. 1620



OTDA for biomedical data (1)

Subject s,
i reen
With Eye Trace,

Multi-subject P300 classification [Gayraud et al., 2017]

e Objective : reduce calibration for BCl users.
e P300 signal is different accross subjects so adapting models is hard.
e Perform XDAWN [Rivet et al., 2009] as pre-processing.

e Use OTDA to adapt each subject in the dataset to a new subject.

Train independent classifier on transported data and perform aggregation.
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OTDA for biomedical data (1)
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Multi-subject P300 classification [Gayraud et al., 2017]

e Objective : reduce calibration for BCl users.
e P300 signal is different accross subjects so adapting models is hard.

e Perform XDAWN [Rivet et al., 2009] as pre-processing.

Use OTDA to adapt each subject in the dataset to a new subject.

Train independent classifier on transported data and perform aggregation.
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OTDA for biomedical data (2)

EEG sleep stage classification [Chambon et al., 2018]

e Use pre-trained neural network.
e Adapt with OTDA on the penultimate layer.

e OTDA best DA approach to adapt between EEG
recordings.

e 1record

05 06 07 08 09
Balanced Accuracy with S

Prostace cancer classification [Gautheron et al., 2017]

e Adaptation of MRI voxel features from
1.5T to 3T.

e Achieve good performance accross
subjects and modality with no target
labels.

4 /.:'1-"‘ 4 _ﬁ’-
Ground truth
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Conclusion

Dataset Optimal transport Classification on transported samples
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Optimal Transport for Domin Adaptation

e OT is a tool to estimate least effort mapping.
e The OT mapping can be used to adapt data.

e When continuous mapping is available the adaptation can be done the other way
around with f o 77! [Flamary et al., 2019].

e Other variants of OT for DA rely on transporting the features/label
simultaneously [Courty et al., 2017, Damodaran et al., 2018].
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Thank you

Python code available on GitHub:
https://github.com/rflamary/POT

e OT LP solver, Sinkhorn (stabilized, e—scaling, GPU)

e Domain adaptation with OT.
e Barycenters, Wasserstein unmixing.

e \Wasserstein Discriminant Analysis.

%%0@ 90

Tutorial on OT for ML:

B0 enge gL GG

7
http://tinyurl.com/otml-isbi // : % \
Papers available on my website: //"‘ / % N\ \
https://remi.flamary.com/ “4"‘..“"‘” -\.“\{‘.
Q
Post docs available in: Nice (France) o4 ‘?‘20 o g\:;:\
* 2o Fo=f .3.":"

ki
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