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Introduction



The 2 pixels image

Data as vector in high dimensional space

• Most datasets can be expressed as samples in a vector space.

• The samples correspond to position in this space.

• When examples have a label, one may want to perform classification.

• Training a classifier f corresponds to finding a partition of this space.
Demo
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Supervised learning

Traditional supervised learning : empirical risk minimization
We week for a predictor f minimizing

min
f

{
E

(x,y)∼P̂
L(y, f(x)) =

∑
j

L(yj , f(xj))

}
(1)

• Well known generalization results for predicting on new data.

• Loss is usually L(y, f(x)) = (y − f(x))2 for least square regression and is

L(y, f(x)) = max(0, 1− yf(x))2 for squared Hinge loss SVM.
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Domain Adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains

Our context

• Classification problem with data coming from different sources (domains).

• Distributions are different but related.
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Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

• Labels only available in the source domain, and classification is conducted in the

target domain.

• Classifier trained on the source domain data performs badly in the target domain
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Optimal Transport for Domain

Adaptation



The origins of optimal transport

Problem [Monge, 1781]

• How to move dirt from one place (déblais) to another (remblais) while minimizing

the effort ?

• Find a mapping T between the two distributions of mass (transport).

• Optimize with respect to a displacement cost c(x, y) (optimal).
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Optimal transport (Monge formulation)

0 20 40 60 80 100
x,y

Distributions

0 20 40 60 80 100
y

Quadratic cost c(x, y) = |x y|2

c(20, y)
c(40, y)
c(60, y)

• Probability measures µs and µt on and a cost function c : Ωs × Ωt → R+.

• The Monge formulation [Monge, 1781] aim at finding a mapping T : Ωs → Ωt

inf
T#µs=µt

∫
Ωs

c(x, T (x))µs(x)dx (2)

• Non-convex optimization problem, mapping does not exist in the general case.

• [Brenier, 1991] proved existence and unicity of the Monge map for

c(x, y) = ‖x− y‖2 and distributions with densities.
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Kantorovich relaxation

• Leonid Kantorovich (1912–1986), Economy nobelist in 1975

• Focus on where the mass goes, allow splitting [Kantorovich, 1942].

• Applications mainly for resource allocation problems
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Optimal transport with discrete distributions

Distributions

Source s

Target t

Matrix C OT matrix 

Kantorowitch formulation : OT Linear Program
When µs =

∑n
i=1 aiδxs

i
and µt =

∑n
i=1 biδxt

i

γ0 = argmin
γ∈P

{
〈γ,C〉F =

∑
i,j

γi,jci,j

}

where C is a cost matrix with ci,j = c(xsi ,x
t
j) and the marginals constraints are

P =
{
γ ∈ (R+

)
ns×nt | γ1nt = a,γ

T
1ns = b

}
Linear program with nsnt variables and ns + nt constraints. Demo
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Optimal transport with discrete distributions

Distributions

Source s

Target t

Matrix C OT matrix with samples
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Transporting the discrete samples

Distributions

Source s

Target t

Classt OT Reg. Entropic OT

Barycentric mapping [Ferradans et al., 2014]

T̂γ0
(xsi ) = argmin

x

∑
j

γ0(i, j)c(x,xtj). (3)

• The mass of each source sample is spread onto the target samples (line of γ0).

• The mapping is the barycenter of the target samples weighted by γ0

• Closed form solution for the quadratic loss.

• Limited to the samples in the distribution (no out of sample).

• Trick: learn OT on few samples and apply displacement to the nearest point.
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Histogram matching in images

Pixels as empirical distribution [Ferradans et al., 2014]
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Histogram matching in images

Image colorization [Ferradans et al., 2014]
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Seamless copy in images

Poisson image editing [Pérez et al., 2003]

• Use the color gradient from the source image.

• Use color border conditions on the target image.

• Solve Poisson equation to reconstruct the new image.

Seamless copy with gradient adaptation [Perrot et al., 2016]

• Transport the gradient from the source to target color gradient distribution.

• Solve the Poisson equation with the mapped source gradients.

• Better respect of the color dynamic and limits false colors.
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• Use the color gradient from the source image.

• Use color border conditions on the target image.

• Solve Poisson equation to reconstruct the new image.

Seamless copy with gradient adaptation [Perrot et al., 2016]

• Transport the gradient from the source to target color gradient distribution.

• Solve the Poisson equation with the mapped source gradients.

• Better respect of the color dynamic and limits false colors.

13 / 20



Seamless copy in images

Poisson image editing [Pérez et al., 2003]
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Seamless copy with gradient adaptation

Example and webcam demo: https://github.com/ncourty/PoissonGradient
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Optimal transport for domain adaptation

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Assumptions

• There exist a transport in the feature space T between the two domains.

• The transport preserves the conditional distributions:

Ps(y|xs) = Pt(y|T(xs)).

3-step strategy [Courty et al., 2016]

1. Estimate optimal transport between distributions.

2. Transport the training samples with barycentric mapping .

3. Learn a classifier on the transported training samples.
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Visual adaptation datasets

Datasets

• Digit recognition, MNIST VS USPS (10 classes, d=256, 2 dom.).

• Face recognition, PIE Dataset (68 classes, d=1024, 4 dom.).

• Object recognition, Caltech-Office dataset (10 classes, d=800/4096, 4 dom.).

Numerical experiments

• Comparison with state of the art on the 3 datasets.

• OT works very well on digits and object recognition.

• Works well on deep features adaptation and extension to semi-supervised DA.
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OTDA for biomedical data (1)

Multi-subject P300 classification [Gayraud et al., 2017]

• Objective : reduce calibration for BCI users.

• P300 signal is different accross subjects so adapting models is hard.

• Perform XDAWN [Rivet et al., 2009] as pre-processing.

• Use OTDA to adapt each subject in the dataset to a new subject.

• Train independent classifier on transported data and perform aggregation.
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OTDA for biomedical data (2)

EEG sleep stage classification [Chambon et al., 2018]

• Use pre-trained neural network.

• Adapt with OTDA on the penultimate layer.

• OTDA best DA approach to adapt between EEG

recordings.

Prostace cancer classification [Gautheron et al., 2017]

• Adaptation of MRI voxel features from

1.5T to 3T.

• Achieve good performance accross

subjects and modality with no target

labels.
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Conclusion



Conclusion

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Optimal Transport for Domin Adaptation

• OT is a tool to estimate least effort mapping.

• The OT mapping can be used to adapt data.

• When continuous mapping is available the adaptation can be done the other way

around with f ◦ T−1 [Flamary et al., 2019].

• Other variants of OT for DA rely on transporting the features/label

simultaneously [Courty et al., 2017, Damodaran et al., 2018].
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Thank you

Python code available on GitHub:

https://github.com/rflamary/POT

• OT LP solver, Sinkhorn (stabilized, ε−scaling, GPU)

• Domain adaptation with OT.

• Barycenters, Wasserstein unmixing.

• Wasserstein Discriminant Analysis.

Tutorial on OT for ML:

http://tinyurl.com/otml-isbi

Papers available on my website:

https://remi.flamary.com/

Post docs available in: Nice (France)
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