

Optimal Transport for Machine Learning

Part 1: Introduction to Computational Optimal Transport

Rémi Flamary, Nicolas Courty

July 4 2022

Hi Paris Summer School, 2022, Paris

Overview of OTML part of the course

Part 1: Introduction to optimal transport

- Optimal transport problem
- Wasserstein distance and geometry
- Computational aspects and regularized OT
- Optimal Transport extensions

Part 2: Learning with optimal transport

- Learning to map with OT
- Learning from histograms
- Learning from empirical distributions

Table of content (Part 1)

Optimal transport

Monge and Kantorovitch

OT on discrete distributions

Wasserstein distances

Barycenters and geometry of optimal transport

Computational aspects of optimal transport

Special cases: OT in 1D and between Gaussian distributions

Regularized optimal transport

Minimizing the Wasserstein distance

Extensions of Optimal Transport

Partial and Unbalanced Optimal Transport

Unbalanced Optimal Transport

Gromov-Wasserstein and transport across spaces

Optimal transport

What is optimal transport?

The natural geometry of probability measures

Kantorovich Koopmans

Brenier

McCann

Villani

Figalli

Nobel '75

Fields '18

Fields '10

The origins of optimal transport

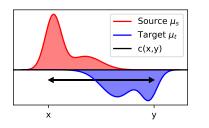
666. Mémoires de l'Académie Royale

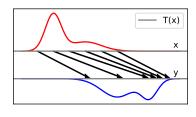
M É M O I R E SUR LA THÉORIE DES DÉBLAIS ET DES REMBLAIS. Par M. MONGE.

Problem [Monge, 1781]

- How to move dirt from one place (déblais) to another (remblais) while minimizing the effort ?
- ullet Find a mapping T between the two distributions of mass (transport).
- ullet Optimize with respect to a displacement cost c(x,y) (optimal).

The origins of optimal transport

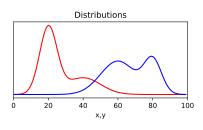


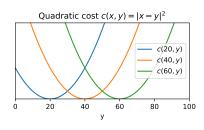


Problem [Monge, 1781]

- How to move dirt from one place (déblais) to another (remblais) while minimizing the effort ?
- ullet Find a mapping T between the two distributions of mass (transport).
- ullet Optimize with respect to a displacement cost c(x,y) (optimal).

Optimal transport (Monge formulation)



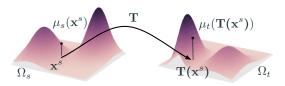


- Probability measures μ_s and μ_t on and a cost function $c: \Omega_s \times \Omega_t \to \mathbb{R}^+$.
- The Monge formulation [Monge, 1781] aim at finding a mapping $T:\Omega_s\to\Omega_t$

$$\inf_{T # \mu_s = \mu_t} \int_{\Omega_s} c(\mathbf{x}, T(\mathbf{x})) \mu_s(\mathbf{x}) d\mathbf{x}$$
 (1)

• Non convex problem because of the constraint $T \# \mu_s = \mu_t$.

What is $T\#\mu_s=\mu_t$?



Pushforward operator T#

ullet Transfers measures from one space Ω_s to another space Ω_t

$$\mu_t(A) = \mu_s(T^{-1}(A)), \quad \forall \text{ Borel subset } A \in \Omega_s$$

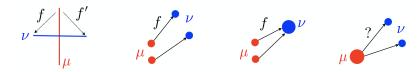
• For smooth measures $\mu_s = \rho(x)dx$ and $\mu_t = \eta(x)dx$

$$T \# \mu_s = \mu_t \equiv \rho(T(x)) |\det(\partial T(x))| = \eta(x)$$

a.k.a. change of variable formula.

• For a discrete distribution $\mu = \sum_i a_i \delta_{\mathbf{x}_i}$ then $T \# \mu = \sum_i a_i \delta_{T(\mathbf{x}_i)}$.

Properties of mapping T

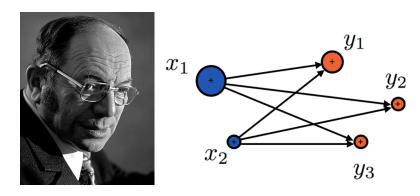


Non-existence / Non-uniqueness

- $T \# \mu_s = \mu_t$ is a non-convex constraint.
- Existence of T is not guaranteed.
- ullet Unicity of T is not guaranteed.
- [Brenier, 1991] proved existence and unicity of the Monge map for $c(x,y)=\|x-y\|^2$ and distributions with densities (i.e. continuous).

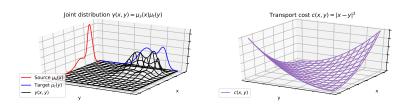
Image from Gabriel Peyré

Kantorovich relaxation



- Leonid Kantorovich (1912–1986), Economy nobelist in 1975
- Focus on where the mass goes, allow splitting [Kantorovich, 1942].
- Applications mainly for resource allocation problems

Optimal transport (Kantorovich formulation)



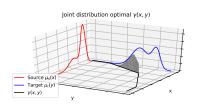
• The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic coupling $T \in \mathcal{P}(\Omega_s \times \Omega_t)$ between Ω_s and Ω_t :

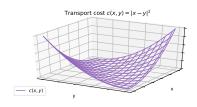
$$\gamma_0 = \underset{T}{\operatorname{argmin}} \int_{\Omega_s \times \Omega_t} c(\mathbf{x}, \mathbf{y}) T(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}, \tag{2}$$

$$\text{s.t.} \quad T \in \mathcal{P}(\underline{\mu_s}, \mu_t) = \left\{ \mathbf{T} \geq \mathbf{0}, \ \int_{\Omega_t} \mathbf{T}(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \underline{\mu_s}, \int_{\Omega_s} \mathbf{T}(\mathbf{x}, \mathbf{y}) d\mathbf{x} = \underline{\mu_t} \right\}$$

- T is a joint probability measure with marginals μ_s and μ_t .
- Linear Program that always has a solution $(\mu_s \otimes \mu_t \in \mathcal{P})$.

Optimal transport (Kantorovich formulation)





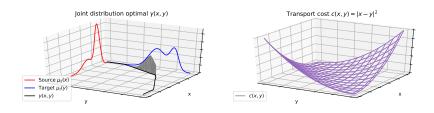
• The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic coupling $T \in \mathcal{P}(\Omega_s \times \Omega_t)$ between Ω_s and Ω_t :

$$\gamma_0 = \underset{T}{\operatorname{argmin}} \int_{\Omega_s \times \Omega_t} c(\mathbf{x}, \mathbf{y}) T(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}, \tag{2}$$

$$\text{s.t.} \quad T \in \mathcal{P}(\underline{\mu_s}, \mu_t) = \left\{ \mathbf{T} \geq \mathbf{0}, \ \int_{\Omega_t} \mathbf{T}(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \underline{\mu_s}, \int_{\Omega_s} \mathbf{T}(\mathbf{x}, \mathbf{y}) d\mathbf{x} = \underline{\mu_t} \right\}$$

- T is a joint probability measure with marginals μ_s and μ_t .
- Linear Program that always has a solution $(\mu_s \otimes \mu_t \in \mathcal{P})$.

Optimal transport (Kantorovich dual formulation)

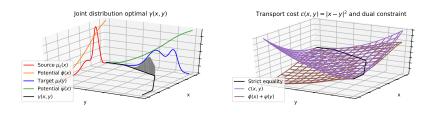


Dual formulation of the OT linear program

$$\max_{\phi,\psi} \left\{ \int \phi d\mu_s + \int \psi d\mu_t \mid \phi(\mathbf{x}) + \psi(\mathbf{y}) \le c(\mathbf{x}, \mathbf{y}) \right\}$$
(3)

- ullet ϕ and ψ are scalar function also known as Kantorovich potentials.
- Equivalent problem by the Rockafellar-Fenchel theorem.
- Objective value separable wrt μ_s and μ_t .
- Primal-dual relation : the support of T is where $\phi(\mathbf{x}) + \psi(\mathbf{y}) = c(\mathbf{x}, \mathbf{y})$

Optimal transport (Kantorovich dual formulation)



Dual formulation of the OT linear program

$$\max_{\phi,\psi} \left\{ \int \phi d\mu_s + \int \psi d\mu_t \mid \phi(\mathbf{x}) + \psi(\mathbf{y}) \le c(\mathbf{x}, \mathbf{y}) \right\}$$
(3)

- ullet ϕ and ψ are scalar function also known as Kantorovich potentials.
- Equivalent problem by the Rockafellar-Fenchel theorem.
- Objective value separable wrt μ_s and μ_t .
- Primal-dual relation : the support of T is where $\phi(\mathbf{x}) + \psi(\mathbf{y}) = c(\mathbf{x}, \mathbf{y})$

Optimal transport (Kantorovich dual formulation)

The linear dual constraint suggest that there exits an optimal ψ for a given ϕ .

c-transform (or c-conjugate)

$$\phi^{c}(\mathbf{y}) \stackrel{\text{def}}{=} H^{c}(\phi) = \inf_{\mathbf{y}} c(\mathbf{x}, \mathbf{y}) - \phi(\mathbf{x})$$
 (4)

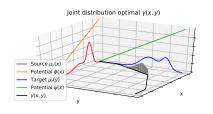
Similar a Legendre transform (equal when $c(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\top} \mathbf{y}$).

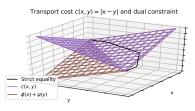
Semi-dual formulation

$$\max_{\phi} \quad \left\{ \int \phi d\mu_s + \int \phi^c d\mu_t \right\} \tag{5}$$

- Depends only on one dual potential through the c-transform.
- ullet Nice reformulation when H^c is easy to compute of close form.
- Special case when $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|$.

Case $c(\mathbf{x},\mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$ (a.k.a W_1^1)





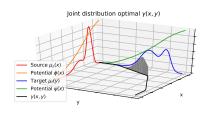
Case $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$

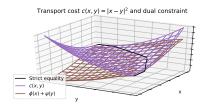
- Existence of a solution but not unique.
- For any $\phi \in \operatorname{Lip}^1$ (set of 1-Lipschitz functions), we have $\phi^c(x) = -\phi(x)$.
- The dual OT problem can be reformulated as

$$\sup_{\phi \in \mathsf{Lip}^1} \int \phi d(\mu_s - \mu_t) = \sup_{\phi \in \mathsf{Lip}^1} \underset{\mathbf{x} \sim \mu_s}{\mathbb{E}} [\phi(x)] - \underset{\mathbf{y} \sim \mu_t}{\mathbb{E}} [\phi(y)]$$
 (6)

- Also known as Kantorovich-Rubinstein duality
- Formulation used for Wasserstein GAN (more details in next part).

Case $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^2 / 2$ (a.k.a W_2^2)





Case
$$c(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||^2/2$$

- When μ_s and μ_t are continuous, T(x) the OT mapping exists and is unique.
- \bullet More remarkably, it is a gradient of a convex functions $\Phi(x)$

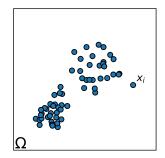
$$T(x) = x - \nabla \phi(x) = \nabla \left(\frac{\|x\|^2}{2} - \phi(x)\right) = \nabla(\Phi(x)) \tag{7}$$

• This is also known as Brenier's Theorem [Brenier, 1991].

Discrete distributions: Empirical vs Histogram

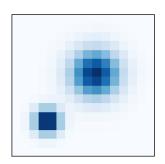
Discrete measure:
$$\mu = \sum_{i=1}^n a_i \delta_{\mathbf{x}_i}, \quad \mathbf{x}_i \in \Omega, \quad \sum_{i=1}^n a_i = 1$$

Lagrangian (point clouds)



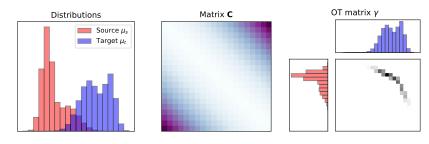
- Constant weight: $a_i = \frac{1}{n}$
- Quotient space: Ω^n , Σ_n

Eulerian (histograms)



- ullet Fixed positions \mathbf{x}_i e.g. grid
- Convex polytope Σ_n (simplex): $\{(a_i)_i \geq 0; \sum_i a_i = 1\}$

Optimal transport with discrete distributions



OT Linear Program

When $\mu_s = \sum_{i=1}^n rac{a_i}{a_i} \delta_{\mathbf{x}_i^s}$ and $\mu_t = \sum_{i=1}^n b_i \delta_{\mathbf{x}_i^t}$

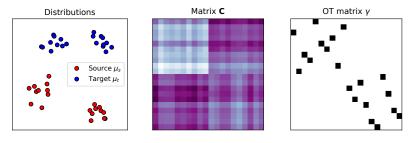
$$\mathbf{T}_{0} = \underset{\mathbf{T} \in \Pi(\boldsymbol{\mu_{s}}, \mu_{t})}{\operatorname{argmin}} \quad \left\{ \left\langle \mathbf{T}, \mathbf{C} \right\rangle_{F} = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

where C is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t)$ and the marginals constraints are

$$\Pi(\pmb{\mu_s}, \pmb{\mu_t}) = \left\{ \mathbf{T} \in (\mathbb{R}^+)^{n_s imes n_t} | \, \mathbf{T} \mathbf{1}_{n_t} = \mathbf{a}, \mathbf{T}^T \mathbf{1}_{n_s} = \mathbf{b}
ight\}$$

Linear program with $n_s n_t$ variables and $n_s + n_t$ constraints. Demo

Optimal transport with discrete distributions



OT Linear Program

When $\pmb{\mu_s} = \sum_{i=1}^n \pmb{a_i} \delta_{\mathbf{x}_i^s}$ and $\pmb{\mu_t} = \sum_{i=1}^n b_i \delta_{\mathbf{x}_i^t}$

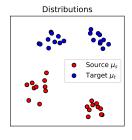
$$\mathbf{T}_{0} = \underset{\mathbf{T} \in \Pi(\boldsymbol{\mu}_{\mathbf{s}}, \boldsymbol{\mu}_{t})}{\operatorname{argmin}} \quad \left\{ \langle \mathbf{T}, \mathbf{C} \rangle_{F} = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

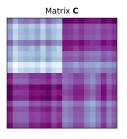
where C is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_i^t)$ and the marginals constraints are

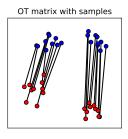
$$\Pi(\pmb{\mu_s}, \pmb{\mu_t}) = \left\{ \mathbf{T} \in (\mathbb{R}^+)^{n_s imes n_t} | \, \mathbf{T} \mathbf{1}_{n_t} = \mathbf{a}, \mathbf{T}^T \mathbf{1}_{n_s} = \mathbf{b}
ight\}$$

Linear program with $n_s n_t$ variables and $n_s + n_t$ constraints. Demo

Optimal transport with discrete distributions







OT Linear Program

When $\pmb{\mu_s} = \sum_{i=1}^n \pmb{a_i} \delta_{\mathbf{x_i^s}}$ and $\pmb{\mu_t} = \sum_{i=1}^n b_i \delta_{\mathbf{x_i^t}}$

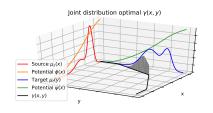
$$\mathbf{T}_0 = \underset{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})}{\operatorname{argmin}} \quad \left\{ \langle \mathbf{T}, \mathbf{C} \rangle_F = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

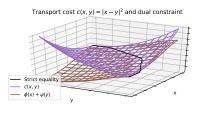
where C is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t)$ and the marginals constraints are

$$\Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \left\{ \mathbf{T} \in (\mathbb{R}^+)^{n_s imes n_t} | \, \mathbf{T} \mathbf{1}_{n_t} = \mathbf{a}, \mathbf{T}^T \mathbf{1}_{n_s} = \mathbf{b}
ight\}$$

Linear program with $n_s n_t$ variables and $n_s + n_t$ constraints. Demo

OT Dual for discrete distributions





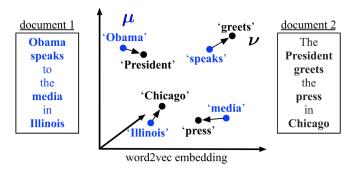
Discrete OT dual formulation

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^{n^s}, \boldsymbol{\beta} \in \mathbb{R}^{n^t}} \quad \boldsymbol{\alpha}^T \mathbf{a} + \boldsymbol{\beta}^T \mathbf{b}$$
 (8)

s.t.
$$\alpha_i + \beta_j \le c_{i,j} \quad \forall i, j$$
 (9)

- With $\mu_s = \sum_{i=1}^n \frac{a_i}{a_i} \delta_{\mathbf{x}_i^s}$ and $\mu_t = \sum_{i=1}^n \frac{b_i}{a_i} \delta_{\mathbf{x}_i^t}$
- ullet Linear program with n_s+n_t variables and n_sn_t constraints.
- Solved with Network Flow solver of complexity $O(n^3 \log(n))$ with $n = \max(n_s, n_t)$.

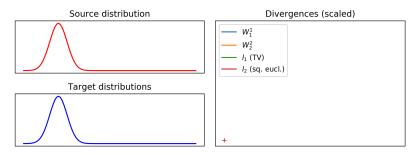
Matching words embedding



Word mover's distance [Kusner et al., 2015]

- Words embedded in a high-dimensional space with neural networks.
- ullet Matching two documents is an OT problem, with the cost being the l_2 distance in the embedded space.
- Small value of the objective means similar documents.
- OT matrix provide interpretability (word correspondance).

Wasserstein distance



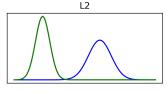
Wasserstein distance

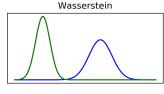
$$W_p^p(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{T \in \mathcal{P}} \quad \int_{\Omega_s \times \Omega_t} \|\mathbf{x} - \mathbf{y}\|^p T(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim T} [\|\mathbf{x} - \mathbf{y}\|^p]$$
(10)

In this case we have $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^p$

- A.K.A. Earth Mover's Distance (W_1^1) [Rubner et al., 2000].
- Do not need the distribution to have overlapping support.
- Works for continuous and discrete distributions (histograms, empirical).

Wasserstein barycenter



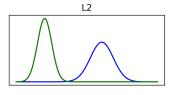


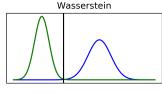
Barycenters [Agueh and Carlier, 2011]

$$\bar{\mu} = \arg\min_{\mu} \quad \sum_{i}^{n} \lambda_{i} W_{p}^{p}(\mu^{i}, \mu)$$

- $\lambda_i > 0$ and $\sum_i^n \lambda_i = 1$.
- Uniform barycenter has $\lambda_i = \frac{1}{n}, \forall i$.
- Interpolation with n=2 and $\lambda=[1-t,t]$ with $0 \le t \le 1$ [McCann, 1997].
- Regularized barycenters using Bregman projections [Benamou et al., 2015].
- The cost and regularization impacts the interpolation trajectory.

Wasserstein barycenter



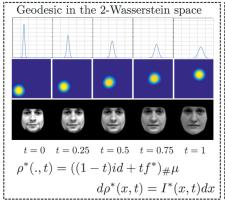


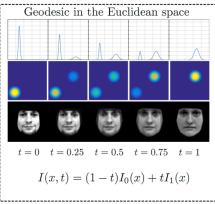
Barycenters [Agueh and Carlier, 2011]

$$\bar{\mu} = \arg\min_{\mu} \quad \sum_{i}^{n} \lambda_{i} W_{p}^{p}(\mu^{i}, \mu)$$

- $\lambda_i > 0$ and $\sum_i^n \lambda_i = 1$.
- Uniform barycenter has $\lambda_i = \frac{1}{n}, \forall i$.
- Interpolation with n=2 and $\lambda=[1-t,t]$ with $0 \le t \le 1$ [McCann, 1997].
- Regularized barycenters using Bregman projections [Benamou et al., 2015].
- The cost and regularization impacts the interpolation trajectory.

Wasserstein space

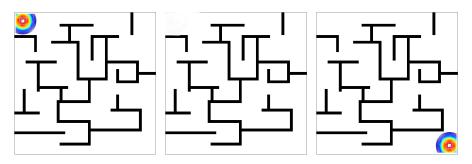




- The space of probability distribution equipped with the Wasserstein metric $(\mathcal{P}_p(X), W_2^2(X))$ defines a geodesic space with a Riemannian structure [Santambrogio, 2014].
- Geodesics are shortest curves on $\mathcal{P}_p(X)$ that link two distributions

Illustration from [Kolouri et al., 2017] and maze example from [Papadakis et al., 2014]

Wasserstein space

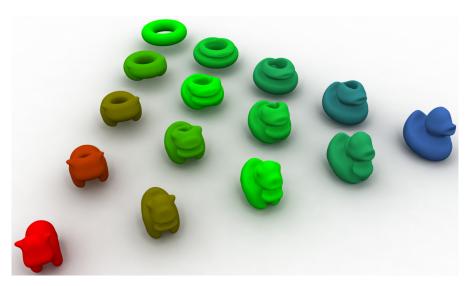


- The space of probability distribution equipped with the Wasserstein metric $(\mathcal{P}_p(X), W_2^2(X))$ defines a geodesic space with a Riemannian structure [Santambrogio, 2014].
- ullet Geodesics are shortest curves on $\mathcal{P}_p(X)$ that link two distributions
- Cost between two pixels is the shortest path in the maze (Riemannian metric).

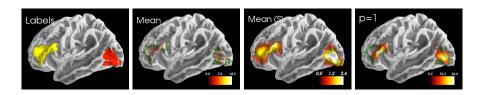
Illustration from [Kolouri et al., 2017] and maze example from [Papadakis et al., 2014]

3D Wasserstein barycenter

Shape interpolation [Solomon et al., 2015]



Wasserstein averaging of fMRI



OT averaging of neurological data [Gramfort et al., 2015]

- Average fMRI activation maps on voxels or cortical surface (natural metric).
- Classical average across subjects and gaussian blur loose information.
- OT averaging recover central activation areas with better precision.
- Can encode both geometrical (3D position) or anatomical connectivity information.
- Extension using OT-Lp seems more robust to noise [Wang et al., 2018].

Outline

Optimal transport

Monge and Kantorovitch

OT on discrete distributions

Wasserstein distances

Barycenters and geometry of optimal transport

Computational aspects of optimal transport

Special cases: OT in 1D and between Gaussian distributions

Regularized optimal transport

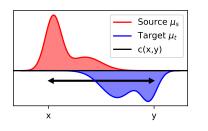
Minimizing the Wasserstein distance

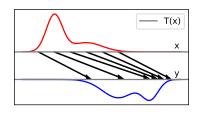
Extensions of Optimal Transport

Partial and Unbalanced Optimal Transport

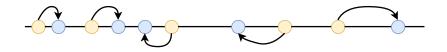
Unbalanced Optimal Transport

Gromov-Wasserstein and transport across spaces





- When c(x,y) is a strictly convex and increasing function of |x-y|.
- If $x_1 < x_2$ and $y_1 < y_2$, we have $c(x_1, y_1) + c(x_2, y_2) < c(x_1, y_2) + c(x_2, y_1)$
- The OT plan respects the ordering of the elements.
- Solution is given by the monotone rearrangement of μ_1 onto μ_2 .
- Simple algorithm for discrete distribution by sorting $O(N \log N)$.



- When c(x, y) is a strictly convex and increasing function of |x y|.
- If $x_1 < x_2$ and $y_1 < y_2$, we have $c(x_1, y_1) + c(x_2, y_2) < c(x_1, y_2) + c(x_2, y_1)$
- The OT plan respects the ordering of the elements.
- Solution is given by the monotone rearrangement of μ_1 onto μ_2 .
- Simple algorithm for discrete distribution by sorting $O(N \log N)$.

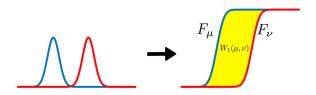


Illustration with cumulative distributions

- F_{μ} cumulative distribution function of μ : $F_{\mu}(t) = \mu(-\infty, t]$.
- $F_{\mu}^{-1}(q), \ q \in [0,1]$ is the quantile function: $F_{\mu}^{-1}(q) = \inf\{x \in \mathbb{R} : F_{\mu}(x) \geq q\}.$
- The value of the W_1 Wasserstein distance

$$W_1(\mu_s, \mu_t) = \int_0^1 c(F_{\mu_s}^{-1}(q), F_{\mu_t}^{-1}(q)) dq$$

• Very fast $O(n \log(n))$ computation on discrete distributions.

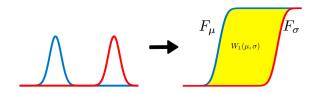


Illustration with cumulative distributions

- F_{μ} cumulative distribution function of μ : $F_{\mu}(t) = \mu(-\infty, t]$.
- $F_{\mu}^{-1}(q), \ q \in [0,1]$ is the quantile function: $F_{\mu}^{-1}(q) = \inf\{x \in \mathbb{R} : F_{\mu}(x) \geq q\}.$
- ullet The value of the W_1 Wasserstein distance

$$W_1(\mu_s, \mu_t) = \int_0^1 c(F_{\mu_s}^{-1}(q), F_{\mu_t}^{-1}(q)) dq$$

• Very fast $O(n \log(n))$ computation on discrete distributions.

Sliced Radon Wasserstein

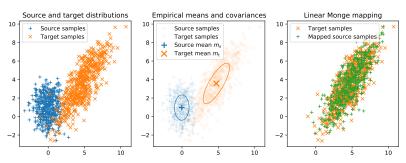
p-sliced Wasserstein distance (pSW) [Bonneel et al., 2015]

$$pSW_p^p(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \int_{\mathbb{S}^{d-1}} W_p^p(\mathcal{R}(\boldsymbol{\mu_s}, \boldsymbol{\theta}), \mathcal{R}(\boldsymbol{\mu_t}, \boldsymbol{\theta})) d\boldsymbol{\theta}$$

where \mathcal{R} is the Radon transform $\mathcal{R}(\mu, \theta) = \int_{\mathbb{S}^{d-1}} \mu(\mathbf{x}) \delta(t - \theta^{\top} \mathbf{x}) d\mathbf{x} \ \forall \theta \in \mathbb{S}^{d-1}$

- ullet Can be approximated by discrete sampling of the directions heta.
- ullet Fast 1D wasserstein on 1D projections when d>1, fast distance estimation and barycenter computation.
- p-sliced Wasserstein distance used for kernel learning between distributions [Kolouri et al., 2016].

Special case: OT between Gaussians (1)



Wasserstein between Gaussian distributions

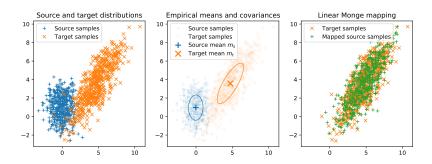
- $\mu_s \sim \mathcal{N}(\mathbf{m}_1, \Sigma_1)$ and $\mu_t \sim \mathcal{N}(\mathbf{m}_2, \Sigma_2)$
- Wasserstein distance with $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|_2^2$ reduces to:

$$W_2^2(\mu_s, \mu_t) = ||\mathbf{m}_1 - \mathbf{m}_2||_2^2 + \mathcal{B}(\Sigma_1, \Sigma_2)^2$$

where $\mathbb{B}(,)$ is the so-called Bures metric:

$$\mathcal{B}(\Sigma_1, \Sigma_2)^2 = \text{trace}(\Sigma_1 + \Sigma_2 - 2(\Sigma_1^{1/2} \Sigma_2 \Sigma_1^{1/2})^{1/2}).$$

Special case: OT between Gaussians (2)



OT mapping between Gaussian distributions

- $\mu_s \sim \mathcal{N}(\mathbf{m}_1, \Sigma_1)$ and $\mu_t \sim \mathcal{N}(\mathbf{m}_2, \Sigma_2)$
- The optimal map T for $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|_2^2$ is given by

$$T(\mathbf{x}) = \mathbf{m}_2 + A(\mathbf{x} - \mathbf{m}_1)$$

with

$$A = \Sigma_1^{-1/2} (\Sigma_1^{1/2} \Sigma_2 \Sigma_1^{1/2})^{1/2} \Sigma_1^{-1/2}$$

Regularized optimal transport

$$\mathbf{T}_{0}^{\lambda} = \underset{\mathbf{T} \in \Pi(\boldsymbol{\mu}_{s}, \boldsymbol{\mu}_{t})}{\operatorname{argmin}} \quad \langle \mathbf{T}, \mathbf{C} \rangle_{F} + \lambda \Omega(\mathbf{T}), \qquad (11)$$

Regularization term $\Omega(\mathbf{T})$

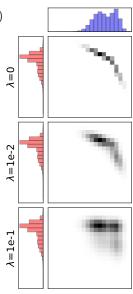
- Entropic regularization [Cuturi, 2013].
- Group Lasso [Courty et al., 2016a].
- KL, Itakura Saito, β-divergences,
 [Dessein et al., 2016].

Why regularize?

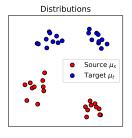
• Smooth the "distance" estimation:

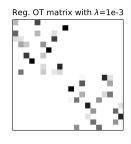
$$W_{\lambda}(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \left\langle \mathbf{T}_0^{\lambda}, \mathbf{C} \right\rangle_F$$

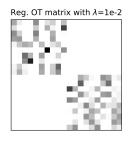
- Encode prior knowledge on the data.
- Better posed problem (convex, stability).
- Fast algorithms to solve the OT problem.



Entropic regularized optimal transport





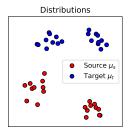


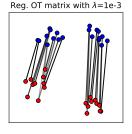
Entropic regularization [Cuturi, 2013]

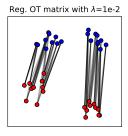
$$\mathbf{T}_0^{\lambda} = \underset{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})}{\operatorname{argmin}} \quad \langle \mathbf{T}, \mathbf{C} \rangle_F + \lambda \sum_{i,j} T_{i,j} (\log T_{i,j} - 1)$$

- ullet Regularization with the negative entropy of T.
- Looses sparsity, gains stability.
- Strictly convex optimization problem.
- Loss and OT matrix are differentiable.

Entropic regularized optimal transport







Entropic regularization [Cuturi, 2013]

$$\mathbf{T}_{0}^{\lambda} = \underset{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})}{\operatorname{argmin}} \quad \langle \mathbf{T}, \mathbf{C} \rangle_F + \lambda \sum_{i,j} T_{i,j} (\log T_{i,j} - 1)$$

- ullet Regularization with the negative entropy of T.
- Looses sparsity, gains stability.
- Strictly convex optimization problem.
- Loss and OT matrix are differentiable.

Solving the entropy regularized problem

Lagrangian of the optimization problem

$$\mathcal{L}(\mathbf{T}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \sum_{ij} T_{ij} C_{ij} + \lambda T_{ij} (\log T_{ij} - 1) + \boldsymbol{\alpha}^{\mathbf{T}} (\mathbf{T} \mathbf{1}_{n_t} - \mathbf{a}) + \boldsymbol{\beta}^{\mathbf{T}} (\mathbf{T}^T \mathbf{1}_{n_s} - \mathbf{b})$$

$$\partial \mathcal{L}(\mathbf{T}, \alpha, \beta) / \partial T_{ij} = \mathbf{C}_{ij} + \lambda \log T_{ij} + \alpha_i + \beta_j$$

$$\partial \mathcal{L}(\mathbf{T}, \alpha, \beta) / \partial T_{ij} = 0 \implies T_{ij} = \exp(\frac{\alpha_i}{\lambda}) \exp(-\frac{\mathbf{C}_{ij}}{\lambda}) \exp(\frac{\beta_j}{\lambda})$$

Entropy-regularized transport

The solution of entropy regularized optimal transport problem is of the form

$$\mathbf{T}_0^{\lambda} = \mathsf{diag}(\mathbf{u}) \exp(-\mathbf{C}/\lambda) \mathsf{diag}(\mathbf{v})$$

- \bullet Through the Sinkhorn theorem $\mathsf{diag}(\mathbf{u})$ and $\mathsf{diag}(\mathbf{v})$ exist and are unique.
- Relation with dual variables: $u_i = \exp(\alpha_i/\lambda), \quad v_j = \exp(\beta_j/\lambda).$
- Can be solved by the **Sinkhorn-Knopp** algorithm.

Sinkhorn-Knopp algorithm

Algorithm 1 Sinkhorn-Knopp Algorithm (SK).

```
Require: \mathbf{a}, \mathbf{b}, \mathbf{C}, \lambda \mathbf{u}^{(0)} = \mathbf{1}, \mathbf{K} = \exp(-\mathbf{C}/\lambda) for i in 1, \dots, n_{it} do \mathbf{v}^{(i)} = \mathbf{b} \oslash \mathbf{K}^{\top} \mathbf{u}^{(i-1)} \ // \ \text{Update right scaling} \mathbf{u}^{(i)} = \mathbf{a} \oslash \mathbf{K} \mathbf{v}^{(i)} \ // \ \text{Update left scaling} end for \mathbf{return} \ \mathbf{T} = \operatorname{diag}(\mathbf{u}^{(n_{it})}) \mathbf{K} \operatorname{diag}(\mathbf{v}^{(n_{it})})
```

- The algorithm performs alternatively a scaling along the rows and columns of $\mathbf{K} = \exp(-\frac{\mathbf{C}}{\lambda})$ to match the desired marginals.
- Complexity $O(kn^2)$, where k iterations are required to reach convergence
- Fast implementation in parallel, GPU friendly
- Convolutive/Heat structure for K [Solomon et al., 2015]

Dual formulation of entropic OT

Primal formulation of entropic OT

$$\min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \quad \langle \mathbf{T}, \mathbf{C} \rangle_F + \lambda \sum_{i,j} T_{i,j} (\log T_{i,j} - 1)$$

Dual formulation of entropic OT

$$\max_{\boldsymbol{\alpha},\boldsymbol{\beta}} \quad \boldsymbol{\alpha}^{T} \mathbf{a} + \boldsymbol{\beta}^{T} \mathbf{b} - \frac{1}{\lambda} \exp\left(\frac{\boldsymbol{\alpha}}{\lambda}\right)^{T} \mathbf{K} \exp\left(\frac{\boldsymbol{\beta}}{\lambda}\right) \quad \text{with } \mathbf{K} = \exp\left(-\frac{\mathbf{C}}{\lambda}\right) \quad (12)$$

- Sinkhorn algorithm is a gradient ascent on the dual variables.
- Dual problem is unconstrained: stochastic gradient descent (SGD)
 [Genevay et al., 2016, Seguy et al., 2017] or L-BFGS [Blondel et al., 2017].
- Semi-dual: closed form for β for a fixed α (sumlogexp) leads to fast SAG algorithm [Genevay et al., 2016].

Solving entropic OT with Bregman Projections

Kullback Leibler (KL) divergence

$$\mathrm{KL}(\mathbf{T}, \rho) = \sum_{ij} T_{ij} \log \frac{T_{ij}}{\rho_{ij}} = \langle \mathbf{T}, \log \frac{\mathbf{T}}{\rho} \rangle_F,$$

where T anf ρ are discrete distributions with the same support.

OT as a Bregman projection [Benamou et al., 2015]

 \mathbf{T}^{\star} is the solution of the following Bregman projection

$$\mathbf{T}^{\star} = \underset{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})}{\operatorname{argmin}} \operatorname{KL}(\mathbf{T}, \mathbf{K}), \quad \text{ where } \mathbf{K} = \exp\left(-\frac{C}{\lambda}\right)$$
 (13)

- Sinkhorn is an iterative projection scheme, with alternative projections on marginal constraints.
- Generalizes to Barycenter computation [Benamou et al., 2015].
- Also generalizes to other regularization but less efficient (Dykstra's Projection algorithm [Dessein et al., 2016]).

Sinkhorn divergence

Sinkhorn loss

$$W_{\lambda}(\mu_s, \mu_t) = \min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \quad \langle \mathbf{T}, \mathbf{C} \rangle_F + \lambda \sum_{i,j} T_{i,j} \log T_{i,j}$$

- Entropic term has smoothing effect.
- Not a divergence $(W_{\lambda}(\mu, \mu) > 0 \text{ for } \lambda > 0)$.

OT loss (aka Sharp Sinkhorn [Luise et al., 2018])

$$OT_{\lambda}(\mu_s, \mu_t) = \left\langle \mathbf{T}_0^{\lambda}, \mathbf{C} \right\rangle_F$$

- T₀^λ is the solution of entropic OT above.
- Not a divergence $(OT_{\lambda}(\mu, \mu) > 0 \text{ for } \lambda > 0)$.

Sinkhorn divergence [Genevay et al., 2017]

$$SD_{\lambda}(\mu_s, \mu_t) = W_{\lambda}(\mu_s, \mu_t) - \frac{1}{2}W_{\lambda}(\mu_s, \mu_s) - \frac{1}{2}W_{\lambda}(\mu_t, \mu_t)$$

- True divergence $(SD_{\lambda}(\mu, \mu) = 0)$.
- Better statistical properties as Wasserstein distance [Genevay et al., 2018].

Regularized OT (general case)

$$\boldsymbol{\gamma}_0^{\lambda} = \underset{T \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})}{\operatorname{argmin}} \quad \langle T, \mathbf{C} \rangle_F + \lambda \Omega(T),$$

• Group lasso [Courty et al., 2016b]

$$\Omega(\mathbf{T}) = \sum_{g} \sqrt{\sum_{i,j \in \mathcal{G}_g} T_{i,j}^2}$$

Promotes group sparsity (also submodular reg. [Alvarez-Melis et al., 2017])

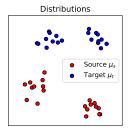
• Frobenius norm [Blondel et al., 2017]

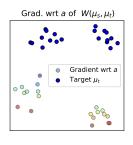
$$\Omega(T) = \sum_{i,j} T_{i,j}^2$$

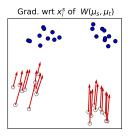
Strongly convex regularization that keeps some sparsity in the solution.

• [Dessein et al., 2016]: KL, Itakura Saito, β -divergences. Solved with Alternative optimization techniques when projection is efficient.

Minimizing the Wasserstein distance







Minimizing the Wasserstein distance

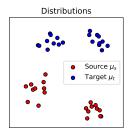
Let $\mu_s = \sum_{i=1}^n a_i \delta_{\mathbf{x}_i^s}$. We seek the minimal Wasserstein estimator:

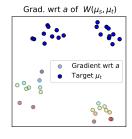
$$\min_{\mu_s} \quad W(\mu_s, \mu_t)$$

In practice for a discrete distribution μ_s there are two ways of doing this:

- Case 1: For a fixed support $X_s = \{x_i^s\}$ find the optimal weights **a** (Eulerian).
- Case 2: For fixed weights **a** find the optimal support $X_s = \{x_i^s\}$ (Lagrangian).

Case 1: fixed support





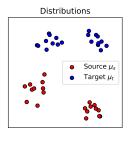


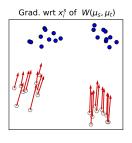
Gradient with respect to weigths a

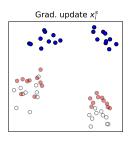
$$W(\boldsymbol{\mu}_{s}, \boldsymbol{\mu}_{t}) = \max_{\boldsymbol{\alpha} \in \mathbb{R}^{n^{s}}, \boldsymbol{\beta} \in \mathbb{R}^{n^{t}}, \alpha_{i} + \beta_{j} \leq c(\mathbf{x}_{i}^{s}, \mathbf{x}_{j}^{t})} \boldsymbol{\alpha}^{T} \mathbf{a} + \boldsymbol{\beta}^{T} \mathbf{b}$$
(14)

- $W(\mu_s, \mu_t)$ is convex wrt. a
- Dual solution $lpha^*$ is a sub-gradient : $lpha^* \in \partial_{\mathbf{a}} W(\pmb{\mu_s}, \pmb{\mu_t})$
- Entropy regularized: $W(\mu_s, \mu_t)$ is smooth, convex and $\nabla_{\mathbf{a}} W_{\lambda}(\mu_s, \mu_t) = \lambda \log \mathbf{u}$.
- OT loss: $\nabla_{\bf a} OT_{\lambda}(\mu_s, \mu_t)$ computed using the implicit function theorem [Luise et al., 2018].

Case 2: fixed probability masses a





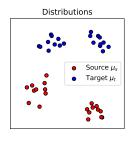


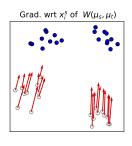
Gradient and update respect to weigths $\mathbf{X}_s = \{\mathbf{x}_i^s\}$ for $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^2$

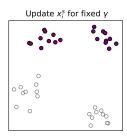
$$W_2^2(\mu_s, \mu_t) = \min_{\mathbf{T} \in \Pi(\mu_s, \mu_t)} \quad \sum_{i,j} T_{i,j} \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^2$$
 (15)

- Gradient: $\nabla_{\mathbf{x}_i^s} W_2^2(\boldsymbol{\mu}_s, \boldsymbol{\mu}_t) = 2\mathbf{x}_i^s 2\frac{1}{a_i} \sum_j T_{i,j} \mathbf{x}_j^t$
- $W_2^2(\mu_s, \mu_t)$ decreases if $\mathbf{X_s} \leftarrow \mathsf{diag}(\mathbf{a}^{-1})\mathbf{T}^*\mathbf{X_t}$
- Expression above called barycentric interpolation [Ferradans et al., 2014].

Case 2: fixed probability masses a







Gradient and update respect to weigths $\mathbf{X}_s = \{\mathbf{x}_i^s\}$ for $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^2$

$$W_2^2(\mu_s, \mu_t) = \min_{\mathbf{T} \in \Pi(\mu_s, \mu_t)} \quad \sum_{i,j} T_{i,j} \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^2$$
 (15)

- Gradient: $\nabla_{\mathbf{x}_i^s} W_2^2(\boldsymbol{\mu}_s, \boldsymbol{\mu}_t) = 2\mathbf{x}_i^s 2\frac{1}{a_i} \sum_j T_{i,j} \mathbf{x}_j^t$
- $W_2^2(\mu_s, \mu_t)$ decreases if $\mathbf{X_s} \leftarrow \mathsf{diag}(\mathbf{a}^{-1})\mathbf{T}^*\mathbf{X_t}$
- Expression above called barycentric interpolation [Ferradans et al., 2014].

General case for entropic OT: autodifferentiation

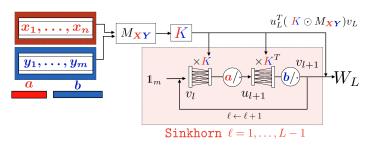


Image from Marco Cuturi

Sinkhorn Autodiff [Genevay et al., 2017]

- Computing gradients through implicit function theorem can be costly [Luise et al., 2018].
- Each iteration of the SInkhorn algorithm is differentiable.
- Modern neural network toolboxes can perform autodiff (Pytorch, Tensorflow).
- Fast but needs log-stabilization for numerical stability.
- At convergence, closed form solution of the gradients exist (no need to autodiff).
 40/56

Outline

Optimal transport

Monge and Kantorovitch

OT on discrete distributions

Wasserstein distances

Barycenters and geometry of optimal transport

Computational aspects of optimal transport

Special cases: OT in 1D and between Gaussian distributions

Regularized optimal transport

Minimizing the Wasserstein distance

Extensions of Optimal Transport

Partial and Unbalanced Optimal Transport

Unbalanced Optimal Transport

Gromov-Wasserstein and transport across spaces

Extensions of Optimal Transport

Relaxation and extensions

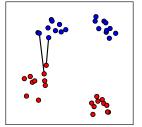
- OT is a powerful formulation for several ML applications.
- But as illustrated by entropic regularization, one can also change the optimization problem to get a better/more representative problem.
- Several extensions and variants of OT has been studied by mathematicians and ML practitioners.

Extensions of Optimal Transport

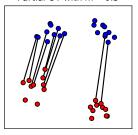
- Partial OT, only a portion of the mass is required to be transported.
- Unbalanced OT, can transport between distributions with different total mass.
- Multi-marginal OT, searches for a transport between more than two distributions.
- Gromov-Wasserstein OT, searches for a transport across metric spaces.

Partial Optimal Transport

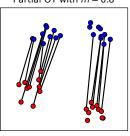
Partial OT with m = 0.1



Partial OT with m = 0.5



Partial OT with m = 0.8



Partial OT [Caffarelli and McCann, 2010, Figalli, 2010]

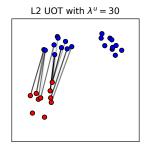
$$\min_{\mathbf{T} \in \Pi^m(\mu_s, \mu_t)} \quad \left\{ \langle \mathbf{T}, \mathbf{C} \rangle_F = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

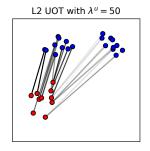
where C is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t)$ and the marginals constraints are

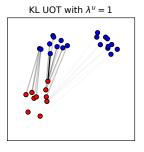
$$\Pi^m(\boldsymbol{\mu}_s, \boldsymbol{\mu}_t) = \left\{ \mathbf{T} \in (\mathbb{R}^+)^{n_s \times n_t} | \mathbf{T} \mathbf{1}_{n_t} \leq \mathbf{a}, \mathbf{T}^T \mathbf{1}_{n_s} \leq \mathbf{b}, \mathbf{1}_{n_s}^T \mathbf{T} \mathbf{1}_{n_t} = m \right\}$$

- The equality constraint is on the total transported mass that must be equal to m.
- Allows distributions with different total mass when $m \leq \min(\mathbf{1}_{n_*}^T \mathbf{a}, \mathbf{1}_{n_*}^T \mathbf{b})$

Unbalanced Optimal Transport





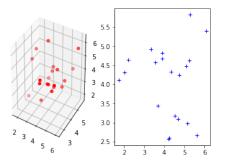


Unbalanced Optimal transport (UOT) [Benamou, 2003]

$$\min_{\mathbf{T} \geq 0} \quad \langle \mathbf{T}, \mathbf{C} \rangle_F + \lambda^u D_{\varphi}(\mathbf{T} \mathbf{1}_m, \mathbf{a}) + \lambda^u D_{\varphi}(\mathbf{T}^{\top} \mathbf{1}_n, \mathbf{b})$$
 (16)

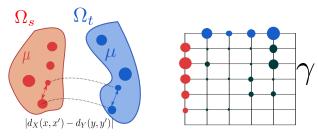
- \bullet D_{φ} is a a Bregman divergence penalizing the violation of the marginal constraints.
- Only a portion of the total mass is transported, total mass can be unbalanced between source and target due to constraint relaxation.
- Closed form exists between Gaussians [Janati et al., 2020, Janati, 2021].
- Can be reformulated and solved like a penalized regression problem [Chapel et al., 2021].

Can you transport between different spaces?



- Ω_s : source space, Ω_t : target space.
- Both domains/spaces do not share the same variables.
- There is no $c(\mathbf{x}, \mathbf{y})$ between the two domains.
- They are related (observe similar objects) but not registered.
- Example: multi-modality with observations on different objects.

Gromov-Wasserstein divergence



Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

$$\mathcal{GW}_{p}(\mu_{s}, \mu_{t}) = \left(\min_{T \in \Pi(\mu_{s}, \mu_{t})} \sum_{i, j, k, l} |D_{i,k} - D'_{j,l}|^{p} T_{i,j} T_{k,l}\right)^{\frac{1}{p}}$$

with
$$\mu_s = \sum_i a_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_j b_j \delta_{x_j^t}$ and $D_{i,k} = \|\mathbf{x}_i^s - \mathbf{x}_k^s\|, D_{j,l}' = \|\mathbf{x}_j^t - \mathbf{x}_l^t\|$

- Distance between metric measured spaces: across different spaces.
- Search for an OT plan that preserve the pairwise relationships between samples.
- Invariant to isometry in either spaces (e.g. rotations and translation).

Entropic Gromov-Wasserstein

Optimization Problem [Peyré et al., 2016]

$$\mathcal{GW}_{p,\epsilon}^{p}(\mu_{s},\mu_{t}) = \min_{\mathbf{T} \in \Pi(\mu_{s},\mu_{t})} \sum_{i,j,k,l} |D_{i,k} - D'_{j,l}|^{p} T_{i,j} T_{k,l} + \epsilon \sum_{i,j} T_{i,j} \log T_{i,j}$$
(17)

with
$$\mu_s = \sum_i a_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_j b_j \delta_{x_j^t}$ and $D_{i,k} = \|\mathbf{x}_i^s - \mathbf{x}_k^s\|, D_{j,l}' = \|\mathbf{x}_j^t - \mathbf{x}_l^t\|$

• Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic \mathcal{GW} [Peyré et al., 2016]

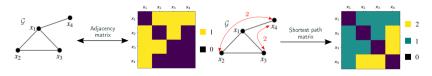
- Problem (17) can be solved using a KL mirror descent.
- ullet This is equivalent to solving at each iteration t

$$\mathbf{T}^{(t+1)} = \min_{T \in \mathcal{P}} \left\langle \mathbf{T}, \mathbf{G}^{(t)} \right\rangle_F + \epsilon \sum_{i,j} T_{i,j} \log T_{i,j}$$

Where $G_{i,j}^{(t)}=2\sum_{k,l}|D_{i,k}-D_{j,l}'|^pT_{k,l}^{(t)}$ is the gradient of the GW loss at previous point $\mathbf{T}^{(k)}$.

- Problem above can be solved using a Sinkhorn-Knopp algorithm of entropic OT.
- Very fast approximation exist for low rank distances [Scetbon et al., 2021].

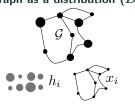
Gromov-Wasserstein between graphs



Modeling the graph structure with a pairwise matrix D

- An undirected graph $\mathcal{G}:=(V,E)$ is defined by $V=\{x_i\}_{i\in[N]}$ set of the N nodes and $E=\{(x_i,x_j)|x_i\leftrightarrow x_j\}$ set of edges.
- \bullet Structure represented as a symmetric matrix D of relations between the nodes.
- Possible choices: Adjacency matrix (used in this study), Laplacian matrix,
 Shortest path matrix.

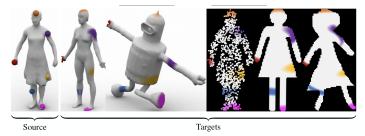
Graph as a distribution (D,h)



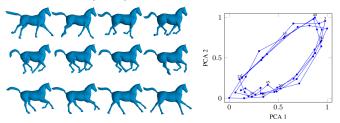
- Graph represented as $\mu_X = \sum_i h_i \delta_{x_i}$.
- The positions x_i are implicit and represented as the pairwise matrix D.
- h_i are the masses on the nodes of the graphs (uniform by default).

Applications of GW [Solomon et al., 2016]

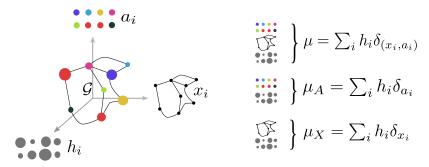
Shape matching between 3D and 2D surfaces



Multidimensional scaling (MDS) of shape collection



Labeled graphs as distributions

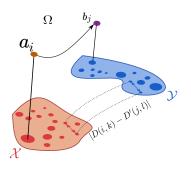


Graph data representation

$$\mu = \sum_{i=1}^{n} h_i \delta_{(x_i a_i)}$$

- Nodes are weighted by their mass h_i .
- But no common metric between the structure points x_i of two different graphs.
- ullet Features values a_i can be compared through the common metric

Fused Gromov-Wasserstein distance



Fused Gromov Wasserstein distance

$$\mu_s = \sum_{i=1}^n h_i \delta_{x_i,a_i}$$
 and $\mu_t = \sum_{j=1}^m g_j \delta_{y_j,b_j}$

$$\mathcal{FGW}_{p,q,\alpha}(D,D',\boldsymbol{\mu_s},\boldsymbol{\mu_t}) = \left(\min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s},\boldsymbol{\mu_t})} \sum_{i,j,k,l} \left((1-\alpha)C_{i,j}^q + \alpha | \mathbf{D_{i,k}} - D_{j,l}'|^q \right)^p T_{i,j} T_{k,l} \right)^{\frac{1}{p}}$$

with
$$D_{i,k} = \|x_i - x_k\|$$
 and $D'_{j,l} = \|y_i - y_l\|$ and $C_{i,j} = \|a_i - b_j\|$

- Parameters q > 1, $\forall p \ge 1$.
- $\alpha \in [0,1]$ is a trade off parameter between structure and features.

FGW Properties (1)

$$\mathcal{FGW}_{p,q,\alpha}^{p}(D, D', \mu_{s}, \mu_{t}) = \min_{\mathbf{T} \in \Pi(\mu_{s}, \mu_{t})} \sum_{i,j,k,l} \left((1 - \alpha) C_{i,j}^{q} + \alpha |D_{i,k} - D'_{j,l}|^{q} \right)^{p} T_{i,j} T_{k,l}$$

Metric properties [Vayer et al., 2020]

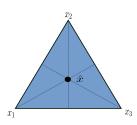
- FGW defines a metric over structured data with measure and features preserving isometries as invariants.
- \mathcal{FGW} is a metric for q=1 a semi metric for q>1, $\forall p\geq 1$.
- The distance is nul iff:
 - There exists a Monge map $T\#\mu_s = \mu_t$.
 - Structures are equivalent through this Monge map (isometry).
 - Features are equal through this Monge map.

Other properties for continuous distributions

- Interpolation between W ($\alpha = 0$) and $\mathcal{G}W$ ($\alpha = 1$) distances.
- Geodesic properties (constant speed, unicity).

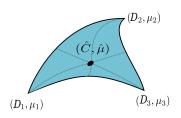
FGW barycenter

Euclidean barycenter



$$\min_{x} \sum_{k} \lambda_{k} \|x - x_{k}\|^{2}$$

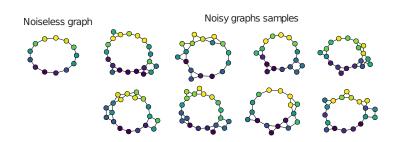
FGW barycenter



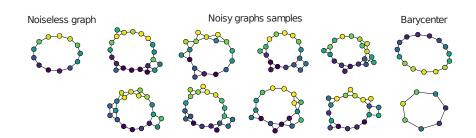
$$\min_{D \in \mathbb{R}^{n \times n}, \mu} \sum_{i} \lambda_{i} \mathcal{FGW}(D_{i}, D, \mu_{i}, \mu)$$

FGW barycenter p = 1, q = 2

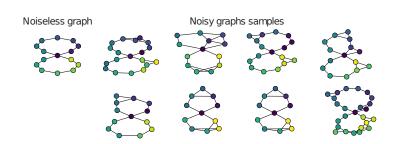
- Estimate FGW barycenter using Frechet means (similar to [Peyré et al., 2016]).
- Barycenter optimization solved via block coordinate descent (on $T, D, \{a_i\}_i$).
- Can chose to fix the structure (D) or the features $\{a_i\}_i$ in the barycenter.
- ullet a_{ii} , and D updates are weighted averages using T.



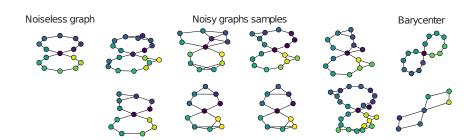
- We select a clean graph, change the number of nodes and add label noise and random connections.
- $\bullet \ \ \mbox{We compute the barycenter on} \ n=15 \ \mbox{and} \ n=7 \ \mbox{nodes}.$
- \bullet Barycenter graph is obtained through thresholding of the D matrix.



- We select a clean graph, change the number of nodes and add label noise and random connections.
- $\bullet \ \ \mbox{We compute the barycenter on} \ n=15 \ \mbox{and} \ n=7 \ \mbox{nodes}.$
- ullet Barycenter graph is obtained through thresholding of the D matrix.

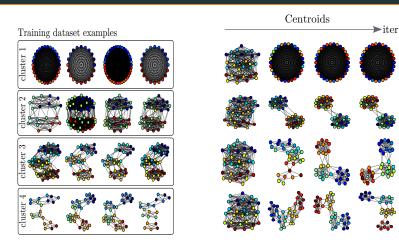


- We select a clean graph, change the number of nodes and add label noise and random connections.
- $\bullet \ \ \mbox{We compute the barycenter on} \ n=15 \ \mbox{and} \ n=7 \ \mbox{nodes}.$
- ullet Barycenter graph is obtained through thresholding of the D matrix.



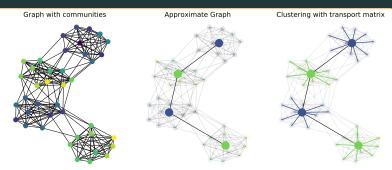
- We select a clean graph, change the number of nodes and add label noise and random connections.
- $\bullet \ \ \mbox{We compute the barycenter on} \ n=15 \ \mbox{and} \ n=7 \ \mbox{nodes}.$
- ullet Barycenter graph is obtained through thresholding of the D matrix.

FGW for graphs based clustering



- Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10 graphs \times 4 types of communities)
- ullet k-means clustering using the FGW barycenter

FGW for community clustering



Graph approximation and comunity clustering

$$\min_{D,\mu} \quad \mathcal{FGW}(D, D_0, \mu, \mu_0)$$

- ullet Approximate the graph (D_0,μ_0) with a small number of nodes.
- OT matrix give the clustering affectation.
- Works for signals and multiple modes in the clusters.

FGW for community clustering

Graph with bimodal communities

Approximate Graph

Clustering with transport matrix

Graph approximation and comunity clustering

$$\min_{D,\mu} \quad \mathcal{FGW}(D, D_0, \mu, \mu_0)$$

- Approximate the graph (D_0, μ_0) with a small number of nodes.
- OT matrix give the clustering affectation.
- Works for signals and multiple modes in the clusters.

Summary for Part 1

Optimal transport

- Theoretically grounded ways of comparing probability distributions.
- Non-parametric comparison (between empirical distributions).
- Ground metric encode the geometry of the space (barycenters, geodesic).
- Two aspects: mapping (Monge) vs coupling (Kantorovitch).
- Several variants exists depending on the application.

Optimization

- Solving OT is a linear program.
- Regularization (entropic) leads to faster algorithms.
- Minimization of Wasserstein distance can be done.
- Reference for computational OT : [Peyré et al., 2019]

Next step: how to use it in machine learning applications?

References i

[Agueh and Carlier, 2011] Agueh, M. and Carlier, G. (2011).

Barycenters in the wasserstein space.

SIAM Journal on Mathematical Analysis, 43(2):904–924.

[Alvarez-Melis et al., 2017] Alvarez-Melis, D., Jaakkola, T. S., and Jegelka, S. (2017).

Structured optimal transport.

arXiv preprint arXiv:1712.06199.

[Benamou, 2003] Benamou, J.-D. (2003).

[Benamou et al., 2015] Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and Peyré, G. (2015).

Iterative Bregman projections for regularized transportation problems. ${\it SISC}.$

Numerical resolution of an "unbalanced" mass transport problem.

ESAIM: Mathematical Modelling and Numerical Analysis, 37(5):851–868.

References ii

[Blondel et al., 2017] Blondel, M., Seguy, V., and Rolet, A. (2017). Smooth and sparse optimal transport. arXiv preprint arXiv:1710.06276.

[Bonneel et al., 2015] Bonneel, N., Rabin, J., Peyré, G., and Pfister, H. (2015).

Sliced and radon Wasserstein barycenters of measures.

Journal of Mathematical Imaging and Vision, 51:22-45.

[Brenier, 1991] Brenier, Y. (1991).

Polar factorization and monotone rearrangement of vector-valued functions.

Communications on pure and applied mathematics, 44(4):375-417.

[Caffarelli and McCann, 2010] Caffarelli, L. A. and McCann, R. J. (2010).
Free boundaries in optimal transport and monge-ampere obstacle problems.

Annals of mathematics, pages 673–730.

 $[Chapel\ et\ al.,\ 2021]\ Chapel,\ L.,\ Flamary,\ R.,\ Wu,\ H.,\ F\'{e}votte,\ C.,\ and\ Gasso,\ G.\ (2021).$

Unbalanced optimal transport through non-negative penalized linear regression.

In Neural Information Processing Systems (NeurIPS).

References iii

[Courty et al., 2016a] Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2016a).
Optimal transport for domain adaptation.

IEEE Transactions on Pattern Analysis and Machine Intelligence.

[Courty et al., 2016b] Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2016b).

Optimal transport for domain adaptation.

Pattern Analysis and Machine Intelligence, IEEE Transactions on.

[Cuturi, 2013] Cuturi, M. (2013).

Sinkhorn distances: Lightspeed computation of optimal transportation.

In Neural Information Processing Systems (NIPS), pages 2292-2300.

[Dessein et al., 2016] Dessein, A., Papadakis, N., and Rouas, J.-L. (2016).

Regularized optimal transport and the rot mover's distance.

arXiv preprint arXiv:1610.06447.

[Ferradans et al., 2014] Ferradans, S., Papadakis, N., Peyré, G., and Aujol, J.-F. (2014).

Regularized discrete optimal transport.

SIAM Journal on Imaging Sciences, 7(3).

References iv

```
[Figalli, 2010] Figalli, A. (2010).
  The optimal partial transport problem.
  Archive for rational mechanics and analysis, 195(2):533-560.
[Genevay et al., 2018] Genevay, A., Chizat, L., Bach, F., Cuturi, M., and Peyré, G. (2018).
  Sample complexity of sinkhorn divergences.
  arXiv preprint arXiv:1810.02733.
[Genevay et al., 2016] Genevay, A., Cuturi, M., Peyré, G., and Bach, F. (2016).
  Stochastic optimization for large-scale optimal transport.
  In NIPS, pages 3432-3440.
[Genevay et al., 2017] Genevay, A., Peyré, G., and Cuturi, M. (2017).
  Sinkhorn-autodiff: Tractable wasserstein learning of generative models.
  arXiv preprint arXiv:1706.00292.
```

References v

[Gramfort et al., 2015] Gramfort, A., Peyré, G., and Cuturi, M. (2015).

Fast optimal transport averaging of neuroimaging data.

In International Conference on Information Processing in Medical Imaging, pages 261–272. Springer.

[Janati, 2021] Janati, H. (2021).

Advances in Optimal transport and applications to neuroscience.

PhD thesis, Institut Polytechnique de Paris.

[Janati et al., 2020] Janati, H., Muzellec, B., Peyré, G., and Cuturi, M. (2020).

Entropic optimal transport between unbalanced gaussian measures has a closed form.

Advances in Neural Information Processing Systems, 33.

[Kantorovich, 1942] Kantorovich, L. (1942).

On the translocation of masses.

C.R. (Doklady) Acad. Sci. URSS (N.S.), 37:199-201.

References vi

[Kolouri et al., 2017] Kolouri, S., Park, S. R., Thorpe, M., Slepcev, D., and Rohde, G. K. (2017).

Optimal mass transport: Signal processing and machine-learning applications.

IEEE signal processing magazine, 34(4):43–59.

[Kolouri et al., 2016] Kolouri, S., Zou, Y., and Rohde, G. K. (2016).

Sliced wasserstein kernels for probability distributions.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5258–5267.

[Kusner et al., 2015] Kusner, M., Sun, Y., Kolkin, N., and Weinberger, K. (2015).

From word embeddings to document distances.

In International Conference on Machine Learning, pages 957-966.

[Luise et al., 2018] Luise, G., Rudi, A., Pontil, M., and Ciliberto, C. (2018).

Differential properties of sinkhorn approximation for learning with wasserstein distance.

In Advances in Neural Information Processing Systems, pages 5864–5874.

References vii

[McCann, 1997] McCann, R. J. (1997).

A convexity principle for interacting gases.

Advances in mathematics, 128(1):153-179.

[Memoli, 2011] Memoli, F. (2011).

Gromov wasserstein distances and the metric approach to object matching.

Foundations of Computational Mathematics, pages 1–71.

[Monge, 1781] Monge, G. (1781).

Mémoire sur la théorie des déblais et des remblais.

De l'Imprimerie Royale.

[Papadakis et al., 2014] Papadakis, N., Peyré, G., and Oudet, E. (2014).

Optimal Transport with Proximal Splitting.

SIAM Journal on Imaging Sciences, 7(1):212–238.

[Peyré et al., 2019] Peyré, G., Cuturi, M., et al. (2019).

Computational optimal transport: With applications to data science.

Foundations and Trends® in Machine Learning, 11(5-6):355–607.

References viii

```
Gromov-wasserstein averaging of kernel and distance matrices.
  In ICML, pages 2664-2672.
[Rubner et al., 2000] Rubner, Y., Tomasi, C., and Guibas, L. J. (2000).
  The earth mover's distance as a metric for image retrieval.
  International journal of computer vision, 40(2):99–121.
[Santambrogio, 2014] Santambrogio, F. (2014).
  Introduction to optimal transport theory.
  Notes.
[Scetbon et al., 2021] Scetbon, M., Peyré, G., and Cuturi, M. (2021).
  Linear-time gromov wasserstein distances using low rank couplings and costs.
  arXiv preprint arXiv:2106.01128.
[Seguy et al., 2017] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.,
  and Blondel, M. (2017).
```

[Peyré et al., 2016] Peyré, G., Cuturi, M., and Solomon, J. (2016).

Large-scale optimal transport and mapping estimation.

References ix

[Solomon et al., 2015] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A., Du, T., and Guibas, L. (2015).

Convolutional wasserstein distances: Efficient optimal transportation on geometric domains.

ACM Transactions on Graphics (TOG), 34(4):66.

[Solomon et al., 2016] Solomon, J., Peyré, G., Kim, V. G., and Sra, S. (2016).

Entropic metric alignment for correspondence problems.

ACM Transactions on Graphics (TOG), 35(4):72.

[Vayer et al., 2020] Vayer, T., Chapel, L., Flamary, R., Tavenard, R., and Courty, N. (2020).

Fused gromov-wasserstein distance for structured objects.

Algorithms, 13 (9):212.

[Wang et al., 2018] Wang, Q., Redko, I., and Takerkart, S. (2018).

Population averaging of neuroimaging data using I p distance-based optimal transport.

In 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), pages 1–4. IEEE.