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Introduction



Optimal transport (Monge formulation)
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• Probability measures µs and µt on and a cost function c : Ωs × Ωt → R+.

• The Monge formulation [Monge, 1781] aim at finding a mapping T : Ωs → Ωt

inf
T#µs=µt

∫
Ωs

c(x, T (x))µs(x)dx (1)

• Non-convex optimization problem, mapping does not exist in the general case.
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Optimal transport (Kantorovich formulation)
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• The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic

coupling π ∈ P(Ωs × Ωt) between Ωs and Ωt:

π0 = argmin
π

∫
Ωs×Ωt

c(x,y)π(x,y)dxdy, (2)

s.t. π ∈ Π =

{
π ≥ 0,

∫
Ωt

π(x,y)dy = µs,

∫
Ωs

π(x,y)dx = µt

}
• π is a joint probability measure with marginals µs and µt.

• Linear Program that always have a solution.
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Wasserstein distance

Wasserstein distance

W p
p (µs, µt) = min

π∈Π

∫
Ωs×Ωt

c(x,y)π(x,y)dxdy = E(x,y)∼π[c(x,y)] (3)

where c(x,y) = ‖x− y‖p is the ground metric.

• A.K.A. Earth Mover’s Distance (W 1
1 ) [Rubner et al., 2000].

• Do not need the distribution to have overlapping support.

• Subgradients can be computed with the dual variables of the LP.

• Works for continuous and discrete distributions (histograms, empirical).
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Optimal transport for machine learning
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WGAN : Arjovski et al.

Occurences of OT+ML in Google Scholar

Short history of OT for ML

• Recently introduced to ML (well known in image processing since 2000s).

• Computationnal OT allow numerous applications (regularization).

• Deep learning boost (numerical optimization and GAN).
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Optimal transport for domain adaptation



Supervised learning

Traditional supervised learning

• We want to learn predictor such that

y ≈ f(x).

• Actual P(X,Y ) unknown.

• We have access to training dataset

(xi, yi)i=1,...,n (P̂(X,Y )).

• We choose a loss function L(y, f(x)) that

measure the discrepancy.

Empirical risk minimization
We week for a predictor f minimizing

min
f

{
E

(x,y)∼P̂
L(y, f(x)) =

∑
j

L(yj , f(xj))

}
(4)

• Well known generalization results for predicting on new data.

• Loss is usually L(y, f(x)) = (y − f(x))2 for least square regression and is

L(y, f(x)) = max(0, 1− yf(x))2 for squared Hinge loss SVM.
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Domain Adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains

Our context

• Classification problem with data coming from different sources (domains).

• Distributions are different but related.
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Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

• Labels only available in the source domain, and classification is conducted in the

target domain.

• Classifier trained on the source domain data performs badly in the target domain
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Optimal transport for domain adaptation

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Assumptions

• There exist a transport in the feature space T between the two domains.

• The transport preserves the conditional distributions:

Ps(y|xs) = Pt(y|T(xs)).

3-step strategy [Courty et al., 2016]

1. Estimate optimal transport between distributions.

2. Transport the training samples with barycentric mapping .

3. Learn a classifier on the transported training samples.
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OT for domain adaptation : Step 1

Dataset 
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Optimal transport 
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Step 1 : Estimate optimal transport between distributions.

• Choose the ground metric (squared euclidean in our experiments).

• Using regularization allows

• Large scale and regular OT with entropic regularization [Cuturi, 2013].

• Class labels in the transport with group lasso [Courty et al., 2016].

• Efficient optimization based on Bregman projections [Benamou et al., 2015] and

• Majoration minimization for non-convex group lasso.

• Generalized Conditionnal gradient for general regularization (cvx. lasso, Laplacian).
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OT for domain adaptation : Steps 2 & 3Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 
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Step 2 : Transport the training samples onto the target distribution.

• The mass of each source sample is spread onto the target samples (line of π0).

• Transport using barycentric mapping [Ferradans et al., 2014a].

• The mapping can be estimated for out of sample prediction

[Perrot et al., 2016, Seguy et al., 2017].

Step 3 : Learn a classifier on the transported training samples

• Transported sample keep their labels.

• Classic ML problem when samples are well transported.
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Visual adaptation datasets

Datasets

• Digit recognition, MNIST VS USPS (10 classes, d=256, 2 dom.).

• Face recognition, PIE Dataset (68 classes, d=1024, 4 dom.).

• Object recognition, Caltech-Office dataset (10 classes, d=800/4096, 4 dom.).

Numerical experiments

• Comparison with state of the art on the 3 datasets.

• OT works very well on digits and object recognition.

• Works well on deep features adaptation and extension to semi-supervised DA.
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Optimal transport for domain adaptation

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Discussion

• Works very well in practice for large class of transformation [Courty et al., 2016].

• Can use estimated mapping [Perrot et al., 2016, Seguy et al., 2017].

But

• Model transformation only in the feature space.

• Requires the same class proportion between domains [Tuia et al., 2015].

• We estimate a T : Rd → Rd mapping for training a classifier f : Rd → R.
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Joint distribution and classifier estimation

Objectives of JDOT

• Model the transformation of labels (allow change of proportion/value).

• Learn an optimal target predictor with no labels on target samples.

• Approach theoretically justified.

Joint distributions and dataset

• Let Ω ∈ Rd be a feature space of dimension d and C the set of labels.

• Let Ps(X,Y ) ∈ P(Ω× C) and Pt(X,Y ) ∈ P(Ω× C) the source and target joint

distribution.

• We have access to an empirical sampling P̂s = 1
Ns

∑Ns
i=1 δxs

i ,y
s
i

of the source

distribution defined by Xs = {xsi}Ns
i=1 and label information Ys = {ysi }Ns

i=1.

• but the target domain is defined only by an empirical distribution in the feature

space with samples Xt = {xti}Nt
i=1.
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Joint distribution OT (JDOT)

Proxy joint distribution

• Let f be a Ω→ C function from a given class of hypothesis H.

• We define the following joint distribution that use f as a proxy of y

Pft = (x, f(x))x∼µt (5)

and its empirical counterpart P̂t
f

= 1
Nt

∑Nt
i=1 δxt

i,f(xt
i) .

Learning with JDOT
We propose to learn the predictor f that minimize :

min
f

{
W1(P̂s, P̂t

f
) = inf

π∈Π

∑
ij

D(xsi ,y
s
i ;x

t
j , f(xtj))πij

}
(6)

• Π is the transport polytope.

• D(xsi ,y
s
i ;x

t
j , f(xtj)) = α‖xsi − xtj‖2 + L(ysi , f(xtj)) with α > 0.

• We search for the predictor f that better align the joint distributions.

• Generalization bound show that expected risk on target is bounded by 6.
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Optimization problem

min
f∈H,π∈Π

∑
i,j

πi,j
(
αd(xsi ,x

t
j) + L(ysi , f(xtj))

)
+ λΩ(f) (7)

Optimization procedure

• Ω(f) is a regularization for the predictor f

• We propose to use block coordinate descent (BCD)/Gauss Seidel.

• Provably converges to a stationary point of the problem.

π update for a fixed f

• Classical OT problem.

• Solved by network simplex.

• Regularized OT can be used

(add a term to problem (7))

f update for a fixed π

min
f∈H

∑
i,j

πi,jL(ysi , f(xtj)) + λΩ(f) (8)

• Weighted loss from all source labels.

• π performs label propagation.
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Regression with JDOT
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Least square regression with quadratic regularization
For a fixed π the optimization problem is equivalent to

min
f∈H

∑
j

1

nt
‖ŷj − f(xtj)‖2 + λ‖f‖2 (9)

• ŷj = nt
∑
j πi,jy

s
i is a weighted average of the source target values.

• Note that this problem is linear instead of quadratic.

• Can use any solver (linear, kernel ridge, neural network).
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Classification with JDOT
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Multiclass classification with Hinge loss
For a fixed π the optimization problem is equivalent to

min
fk∈H

∑
j,k

P̂j,kL(1, fk(xtj)) + (1− P̂j,k)L(−1, fk(xtj)) + λ
∑
k

‖fk‖2 (10)

• P̂ is the class proportion matrix P̂ = 1
Nt

π>Ps.

• Ps and Ys are defined from the source data with One-vs-All strategy as

Y si,k =

{
1 if ysi = k

−1 else
, P si,k =

{
1 if ysi = k

0 else

with k ∈ 1, · · · ,K and K being the number of classes.
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DeepJDOT

g

g

+

+

min
π∈Π,f,g

1

ns

∑
i

Ls (ysi , f(g(xsi )))+
∑
i,j

πij
(
α‖g(xsi )− g(xtj)‖2 + λtL

(
ysi , f(g(xtj))

))
.

(11)

DeepJDOT [Damodaran et al., 2018]

• Learn simultaneously the embedding g and the classifier f .

• JDOT performed in the joint embedding/label space.

• Use minibatch to estimate OT and update g, f at each iterations.

• Scales to large datasets and estimate a representation for both domains.
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DeepJDOT

g

g

+

+

min
f,g

E

 1

m

m∑
i=1

L (ysi , f(g(x
s
i )) + min

π∈Π

m∑
i,j

πij
(
α‖g(xsi )− g(xtj)‖2 + λtL

(
ysi , f(g(x

t
j))
))

(11)

DeepJDOT [Damodaran et al., 2018]
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DeepJDOT in action

DeepJDOT [Damodaran et al., 2018]

• Evaluation of DeepJDOT on visual classification tasks.

• Digit adaptation between MNIST, USPS, SVHN, MNIST-M.

• Home-office [Venkateswara et al., 2017] and VisDA 2017 [Peng et al., 2017]

dataset.

• Ablation study : all terms are impportant.

• TSNE projections of embeddings (MNIST→MNIST-M).
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DeepJDOT in action
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DeepJDOT in action
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Conclusion OTDA

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 

Optimal transport for DA

• Model transformation of the features.

• Conditional distribution preserved.

• Mapping between distributions.

• Learn classifier on the transported

samples.

Joint distribution OT for DA

• Model transformation of the joint

distribution.

• General framework for DA.

• Theoretical justification with

generalization bound.
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Optimal Transport on structured data



Structured data

Structured data

• A structure data is viewed as a combination of features informations linked within

each other by some structural information.

• Can be seen as a distribution on a joint feature/structure space.

• Example : labeled graph.

Meaningful distances on structured data

• Us both features (labels) and structure (graph).

• Allows for comparison, classification.

• Data science (statistics, means)
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Structured data as distributions

}
}

}
Graph data representation

µ =

n∑
i=1

hiδ(xiai)

• Nodes are weighted by their mass hi.

• Features values ai and bj can be compared through the common metric

• But no common between the structure points xi and yj .
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Optimal Transport for structured data

Wasserstein distance for structures data

Wp(µA, µB) =

(
min

π∈Π(µA,µB)

∑
i,j

Mp
i,jπi,j

) 1
p

µA =
∑
i hiδai and µB =

∑
j gjδbj ,Mi,j = ‖ai − bj‖

• Wasserstein good for (empirical) distributions, samples as IID.

• OT can encode structure with OT Lp [Thorpe et al., 2017] by extending the

feature space but requires the same ambient space.
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Gromov-Wasserstein distance for structured data

Inspired from Gabriel Peyré

GW for structured data [Memoli, 2011]

GWp(D,D
′, µX , µY ) =

(
min

π∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′j,l|pπi,j πk,l
) 1

p

µX =
∑
i hiδxi and µY =

∑
j gjδyj and Di,k = ‖xi − xk‖, D′j,l = ‖yj − yl‖

• Distance over measures with no common ground space.

• Works well on graphs (using distances between nodes) but do not handle labels.

• Invariant to rotations and translation in either spaces.
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Fused Gromov-Wasserstein distance

a

b

Fused Gromov Wasserstein distance

FGWp,q,α(D,D′, µs, µt) =

(
min

π∈Π(µs,µt)

∑
i,j,k,l

(
(1−α)Mq

i,j+α|Di,k−D
′
j,l|q

)p
πi,j πk,l

) 1
p

µs =
∑n
i=1 hiδxi,ai and µt =

∑m
j=1 gjδyj ,bj

• Parameters q > 1, ∀p ≥ 1.

• α ∈ [0, 1] is a trade off parameter between structure and features.
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FGW Properties (1)

FGWp,q,α(D,D′, µs, µt) =

(
min

π∈Π(µs,µt)

∑
i,j,k,l

(
(1−α)Mq

i,j+α|Di,k−D
′
j,l|q

)p
πi,j πk,l

) 1
p

Metric properties

• FGW defines a metric over structured data with measure and features

preserving isometries as invariants.

• FGW is a metric for q = 1 a semi metric for q > 1, ∀p ≥ 1.

• The distance is nul iff :

• There exists a Monge map T#µs = µt.

• Structures are equivalent through this Monge map (isometry).

• Features are equal through this Monge map.

Other properties for sontinuous distributions

• Interpolation between W (α = 0) and GW (α = 1) distances.

• Geodesic properties (constant speed, unicity).
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FGW Properties (2)

FGWp,q,α(D,D′, µs, µt) =

(
min

π∈Π(µs,µt)

∑
i,j,k,l

(
(1−α)Mq

i,j+α|Di,k−D
′
j,l|q

)p
πi,j πk,l

) 1
p

Bounds and convergence to finite samples

• The following inequalities hold:

FGW(µs, µt) ≥ (1− α)W(µA, µB)q

FGW(µs, µt) ≥ αGW(µX , µY )q

• Bound when X = Y:

FGW(µs, µt)
p ≤ 2W(µs, µt)

p

• Convergence of finite samples when X = Y with d = Dim(X ) +Dim(Ω) :

E[FGW(µ, µn)] = O
(
n−

1
d

)
30 / 40



Computing FGW

π∗ = arg min
π∈Π(µs,µt)

vec(π)TQvec(π) + vec((1− α)M)T vec(π) (12)

where Q = −2αD′ ⊗D

Algorithmic resolution (p = 1)

• Problem is a non-convex Quadratic Program.

• We use Conditional gradient [Ferradans et al., 2014b] with network simplex solver.

• Convergence to a local minima [Lacoste-Julien, 2016].

• With entropic regularization, projected gradient descent [Peyré et al., 2016].
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Computing FGW

π∗ = arg min
π∈Π(µs,µt)

vec(π)TQvec(π) + vec((1− α)M)T vec(π) (12)

Algorithm 1 Conditional Gradient (CG) for FGW

1: π(0) ← µXµ
>
Y

2: for i = 1, . . . , do

3: G← Gradient from Eq. (12) w.r.t. π(i−1)

4: π̃(i) ← Solve OT with ground loss G

5: τ (i) ← Line-search for loss with τ ∈ (0, 1)

6: π(i) ← (1− τ (i))π(i−1) + τ (i)π̃(i)

7: end for

Algorithmic resolution (p = 1)

• Problem is a non-convex Quadratic Program.

• We use Conditional gradient [Ferradans et al., 2014b] with network simplex solver.

• Convergence to a local minima [Lacoste-Julien, 2016].

• With entropic regularization, projected gradient descent [Peyré et al., 2016].
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Illustration of FGW distance
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FGW maps on toy tree

• Uniform weights on the leafs of the tree.

• Structure distance taken as shortest path on the tree.

• Only FGW can encode both features and structures.

32 / 40



Application of FGW distance

Vector attributes AIDS BZR COX2 CUNEIFORM ENZYMES PROTEIN SYNTHETIC

FGW sp 99.44+/-0.47 85.12+/-4.15 77.23+/-4.86 76.67+/-7.04 71.00+/-6.76 74.55+/-2.74 100.00+/-0.00

FGW sp regul - 85.61+/-5.05 77.66+/-4.17 - 70.17+/-6.81 74.64+/-2.99 -

FGW wsp 99.55+/-0.35 84.88+/-4.34 78.09+/-3.81 - 69.50+/-7.30 75.09+/-2.34 -

FGWDMM sp - 84.39+/-5.48 76.81+/-4.30 - 61.67+/-7.19 75.00+/-2.59 -

FGWDMM wsp - 83.17+/-5.05 78.30+/-3.53 - 59.17+/-6.55 75.09+/-3.03 -

HOPPER all cv 99.50+/-0.59 84.15+/-5.26 79.57+/-3.46 32.59+/-8.73 45.33+/-4.00 71.96+/-3.22 90.67+/-4.67

PROPA all cv 98.45+/-1.06 79.51+/-5.02 77.66+/-3.95 12.59+/-6.67 71.67+/-5.63 61.34+/-4.38 64.67+/-6.70

PSCN k=10 99.80+/-0.24 80.00+/-4.47 71.70+/-3.57 25.19+/-7.73 26.67+/-4.77 67.95+/-11.28 100.00+/-0.00

PSCN k=5 99.85+/-0.23 82.20+/-4.23 71.91+/-3.40 24.81+/-7.23 27.33+/-4.16 71.79+/-3.39 100.00+/-0.00

Graph classification

• Classifiation accuracy on classical graph datasets.

• Comparison with state-of-the-art graph kernel approaches and Graph CNN.

• We use exp(−γFGW) as a non-positive kernel for an SVM [Loosli et al., 2016]

(FGW).

• Train Wassertsein Distance Measure Machine [Rakotomamonjy et al., 2018]

(FGWDMM).
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Application of FGW distance

Discrete attributes MUTAG NCI1 PTC

FGW raw sp 83.26+/-10.30 72.82+/-1.46 55.71+/-6.74

FGW wl h=2 sp 86.42+/-7.81 85.82+/-1.16 63.20+/-7.68

FGW wl h=2 sp regul 84.74+/-8.03 - 63.37+/-6.75

FGW wl h=4 sp 88.42+/-5.67 86.42 +/- 1.63 65.31+/-7.90

FGW wl h=4 sp regul 86.42+/-8.81 - 63.83+/-7.83

GK k=3 82.42+/-8.40 60.78+/-2.48 56.46+/-8.03

PSCN k=10 83.47+/-10.26 70.65+/-2.58 58.34+/-7.71

PSCN k=5 83.05+/-10.80 69.85+/-1.79 55.37+/-8.28

RW all cv 79.47+/-8.17 58.63+/-2.44 55.09+/-7.34

SP all cv 82.95+/-8.19 74.26+/-1.53 -

WL all cv 86.21+/-8.48 85.77+/-1.07 62.86+/-7.23

WL h=2 86.21+/-8.15 81.85+/-2.28 61.60+/-8.14

WL h=4 83.68+/-9.13 85.13+/-1.61 62.17+/-7.80

Without attribute IMDB-B IMDB-M

FGW raw sp 63.80+/-3.49 48.00+/-3.22

GK k=3 56.00+/-3.61 41.13+/-4.68

SP all cv 55.80+/-2.93 38.93+/-5.12

Graph classification

• Classifiation accuracy on classical graph datasets.

• Comparison with state-of-the-art graph kernel approaches and Graph CNN.

• We use exp(−γFGW) as a non-positive kernel for an SVM [Loosli et al., 2016]

(FGW).

• Train Wassertsein Distance Measure Machine [Rakotomamonjy et al., 2018]

(FGWDMM).
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FGW barycenter

FGW barycenter p = 1, q = 2

• Estimate FGW barycenter using Frechet means.

• Barycenter optimization solved via block coordinate descent (on π, D, {ai}i).

• Can chose to fix the structure (D) or the features {ai}i in the barycenter.

• aii, and D updates are weighted averages using π.
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FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples

Barycenter of noisy graphs

• We select a clean graph, change the number of nodes and add label noise and

random connections.

• We compute the barycenter on n = 15 and n = 7 nodes.

• Barycenter graph is obtained through thresholding of the D matrix.
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FGW barycenter for time series

−2

0

Euclidean barycenter (N = 275)

−2

0

DBA barycenter (N = 20)

0 50 100 150 200 250

−2

0

Soft-DTW barycenter (γ = 1, N = 20)

0 50 100 150 200 250

−2

0

FGW barycenter (α = 10−6, N = 20)

Time series averaging

• Comparsion with Euclidean, DBA [Petitjean et al., 2011] and Soft-DTW

[Cuturi and Blondel, 2017].

• Structure is time position of samples, fetaure value of the signal.

• Temporal position of nodes recovered with a MDS of D.

• Barycenter have non-regular sampling.
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FGW barycenter for mesh interpolation

Mesh interpolation

• Two meshes (deer and cat).

• Fix structure from cat, estimate barycenter for the positions of the edges.

• Wasserstien (α = 0) do not respect the graph (mesh neighborhood).

• FGW conserve the graph, regularized FGW smoothes the surface.
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FGW for community clustering

Graph with communities Approximate Graph Clustering with transport matrix

Graph approximation and comunity clustering

min
D,µ

FGW(D,D0, µ, µ0)

• Approximate the graph (D0, µ0) with a small number of nodes.

• OT matrix give the clustering affectation.

• Works for signle and multiple modes in the clusters.

38 / 40



FGW for community clustering

Graph with bimodal communities Approximate Graph Clustering with transport matrix

Graph approximation and comunity clustering

min
D,µ

FGW(D,D0, µ, µ0)

• Approximate the graph (D0, µ0) with a small number of nodes.

• OT matrix give the clustering affectation.

• Works for signle and multiple modes in the clusters.
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Conclusion for FGW

}
}

}

a

b

Fused Gromov-Wasserstein distance [Vayer et al., 2018]

• Model structured data as distributions.

• New versatile method for comparing structured data based on Optimal Transport

• Many desirable distance properties

• New notion of barycenter of structured data such as graphs or time series

• Promising applications for signal over graphs and deep learning for structured data

What next ?

• Devise efficient optimization shemes for large structures.

• Add interpretability to deep neural networks on graph.
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Thank you

Python code available on GitHub:

https://github.com/rflamary/POT

• OT LP solver, Sinkhorn (stabilized, ε−scaling, GPU)

• Domain adaptation with OT.

• Barycenters, Wasserstein unmixing.

• Wasserstein Discriminant Analysis.

Python code for JDOT on GitHub:

https://github.com/rflamary/JDOT

Papers available on my website:

https://remi.flamary.com/

Post docs available in:

Nice, Rouen, Rennes (France)
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Generalization bound (1)

Expected loss
The expected loss on a domain D and for a given predictor f is defined as

errD(f)
def
= E

(x,y)∼Pt

L(y, f(x)).

Probabilistic Lipschitzness [Urner et al., 2011, Ben-David et al., 2012]
Let φ : R→ [0, 1]. A labeling function f : Ω→ R is φ-Lipschitz with respect to a

distribution P over Ω if for all λ > 0

Prx∼P [∃y : [|f(x)− f(y)| > λd(x, y)]] ≤ φ(λ).

Probabilistic Transfer Lipschitzness
Let µs and µt be respectively the source and target distributions. Let φ : R→ [0, 1]. A

labeling function f : Ω→ R and a joint distribution Π(µs, µt) over µs and µt are

φ-Lipschitz transferable if for all λ > 0:

Pr(x1,x2)∼Π(µs,µt) [|f(x1)− f(x2)| > λd(x1,x2)] ≤ φ(λ).
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Generalization bound (2)

Theorem 1
Let f be any labeling function of ∈ H. Let

Π∗ = argmin
Π∈Π(Ps,Pf

t )

∫
(Ω×C)2 αd(xs,xt) + L(ys, yt)dΠ(xs, ys;xt, yt) and W1(P̂s,

ˆPf
t ) the

associated 1-Wasserstein distance. Let f∗ ∈ H be a Lipschitz labeling function that verifies the

φ-probabilistic transfer Lipschitzness (PTL) assumption w.r.t. Π∗ and that minimizes the joint error

errS(f∗) + errT (f∗) w.r.t all PTL functions compatible with Π∗. We assume the input instances are

bounded s.t. |f∗(x1)− f∗(x2)| ≤M for all x1,x2. Let L be any symmetric loss function, k-Lipschitz

and satisfying the triangle inequality. Consider a sample of Ns labeled source instances drawn from Ps and

Nt unlabeled instances drawn from µt, and then for all λ > 0, with α = kλ, we have with probability at

least 1− δ that:

errT (f) ≤ W1(P̂s,
ˆPf
t ) +

√
2

c′
log(

2

δ
)

(
1
√
NS

+
1
√
NT

)
+errS(f

∗
) + errT (f

∗
) + kMφ(λ).

• First term is JDOT objective function.

• Second term is an empirical sampling bound.

• Last terms are usual in DA [Mansour et al., 2009, Ben-David et al., 2010].
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