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Supervised Graph Prediction



Graphs are everywhere

• Classical approaches : spectral and Fourier based analysis and processing.

• More recently : deep learning on graphs (GNN).

• This talk is about supervised graph prediction.
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Supervised graph prediction

• Special case of structured prediction.

• Objective : learn a function f predicting a graph g from an input x.

• Applications of SGP:

• knowledge graph extraction [Melnyk et al., 2022]

• Natural language processing [Dozat and Manning, 2017]

• Molecule identification in chemistry [Brouard et al., 2016]

• Most methods are data specific and/or slow at inference.
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How to predict a graph? (1)

Surrogate based methods [Brouard et al., 2016, El Ahmad et al., 2024]

• Represent graph as a vector in a high dimensional space (RKHS).

• Learn a mapping from input to this space.

• Decode the vector to a graph (e.g. search among finite candidates).

Graph prediction with OT barycenters [Brogat-Motte et al., 2022]

• Decoding done with a conditional FGW.

• Can learn parametric (NN) and non-parametric (kernel) models.

• Slow at training and prediction due to barycenter computation.
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How to predict a graph? (2)

Relationformer [Shit et al., 2022]

• Predict a graph of max size M and activation scores for nodes to keep.

• Encoder-Decoder Transformer to predict node embeddings.

• Loss solves linear assignment problem (Hungarian) and uses assignment in

quadratic loss between graphs of same size (padding the target).

• Fast prediction (thresholding) of graphs but focused on Image2Graph.
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Deep end-to-end supervised graph

prediction



Any2Graph framework

Graph
Representation Loss Architecture

Principle [Krzakala et al., 2024]

• End-to-end supervised graph prediction with a deep learning framework.

• Learning optimization problem:

min
θ

1

n

n∑
i=1

L(fθ(xi),P(gi)). (1)

• {xi, gi} are the input/output training data and P is a padding operator.

• fθ is a transformer neural network with fixed max number of nodes M .

• fθ also predicts is a padding vector ĥ (selection of subset of nodes).

• L is an optimal transport based loss for permutation invariant prediction.

6



Forcing the target graph size with padding

Padding Operator

P(g) =

((
1m

0M−m

)
,

(
Fm

0M−m

)
,

(
Am 0M−m

0T
M−m 0M−m,M−m

))

• g = (Fm,Am) ∈ Gm is a labeled graph of size m ≤ M .

• Am is the adjacency matrix and Fm is the node feature matrix.

• P(g) = (h,F,A) where h ∈ 0, 1M is a padding identification vector.

• Pad all graphs in training set to have the same size M .
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End-to-end SGP pipeline

Target Graph

• Pad target graphs to have same size M .

• Predict with fθ (continuous) size M graph with padding vector .̂h.

• Minimize OT loss L between predicted and padded target graphs.

• At test time, thresholding recovers discrete graph.
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End-to-end SGP pipeline

Adjacency
Matrix

• Pad target graphs to have same size M .

• Predict with fθ (continuous) size M graph with padding vector .̂h.

• Minimize OT loss L between predicted and padded target graphs.

• At test time, thresholding recovers discrete graph.
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End-to-end SGP pipeline

Padding

• Pad target graphs to have same size M .

• Predict with fθ (continuous) size M graph with padding vector .̂h.

• Minimize OT loss L between predicted and padded target graphs.

• At test time, thresholding recovers discrete graph.
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End-to-end SGP pipeline

Input

• Pad target graphs to have same size M .

• Predict with fθ (continuous) size M graph with padding vector .̂h.

• Minimize OT loss L between predicted and padded target graphs.

• At test time, thresholding recovers discrete graph.
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End-to-end SGP pipeline

Our loss

Tresholding

• Pad target graphs to have same size M .

• Predict with fθ (continuous) size M graph with padding vector .̂h.

• Minimize OT loss L between predicted and padded target graphs.

• At test time, thresholding recovers discrete graph.
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End-to-end SGP pipeline

Our loss

Tresholding

Prediction

Discrete Loss

• Pad target graphs to have same size M .

• Predict with fθ (continuous) size M graph with padding vector .̂h.

• Minimize OT loss L between predicted and padded target graphs.

• At test time, thresholding recovers discrete graph.
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End-to-end SGP pipeline

 

O
ur loss

D
iscrete Loss

 

 

• Pad target graphs to have same size M .

• Predict with fθ (continuous) size M graph with padding vector .̂h.

• Minimize OT loss L between predicted and padded target graphs.

• At test time, thresholding recovers discrete graph.
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Data fitting loss for graph prediction

1
2

3

2
1

3

Requirements for loss L

• Works between continuous predicted triplet ŷ = (ĥ, F̂, Â) and discrete

target triplet y = (h,F,A) with padding.

• Permutation (graph isomorphism) Invariant.

• Differentiable : for end-to-end training.

• Fused Gromov Wasserstein proposed in [Brogat-Motte et al., 2022].
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Gromov-Wasserstein and Fused Gromov-Wasserstein

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

GWp
p(ys, yt)) = min

T∈Π

∑
i,j,k,l

|Di,k −D′
j,l|pTi,j Tk,l

with Π =
{
T ∈ (R+)ns×nt |T1nt = a,TT1ns = b

}
• D and D′ encode relationships between nodes (adjacency, shortest path).

• a and b are node weights of same total mass.

• Entropy regularized GW proposed in [Peyré et al., 2016].

• Fused GW interpolates between Wass. and GW [Vayer et al., 2018] with

Ci,j the cost between labels across graphs.
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Gromov-Wasserstein and Fused Gromov-Wasserstein

a

b

FGW for discrete distributions [Vayer et al., 2018]

FGWp
p(ys, yt)) = min

T∈Π

∑
i,j,k,l

(
(1− α)Cq

i,j + α|Di,k −D′
j,l|q

)p
Ti,j Tk,l

with Π =
{
T ∈ (R+)ns×nt |T1nt = a,TT1ns = b

}
• D and D′ encode relationships between nodes (adjacency, shortest path).

• a and b are node weights of same total mass.

• Entropy regularized GW proposed in [Peyré et al., 2016].

• Fused GW interpolates between Wass. and GW [Vayer et al., 2018] with

Ci,j the cost between labels across graphs.
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Partially-Masked Fused Gromov-Wasserstein (PM-FGW)

Definition of PM-FGW

PM-FGW(ŷ, y) = min
T∈ΠM

LT(ŷ, y)

with LP(ŷ, y) =
αh

M

∑
i,j

Ti,jℓh(ĥi, hj) Padding loss

+
αf

m

∑
i,j

Ti,jℓf (f̂i, fj)hj Feature loss

+
αA

m2

∑
i,j,k,l

Ti,jTk,lℓA(Âi,k, Aj,l)hjhl. Structure loss

• ℓh, ℓf and ℓA are loss functions for node, feature and adjacency matrix

discrepancies (Kullback-Leibler when target discrete, Squared loss when

continuous feature).

• αh, αf and αA are hyperparameters on the simplex.

• Loss is highly asymmetric due to the right masking by h.

• Can be solved by Conditional Gradient with O(M3 logM) iteration.
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Illustration of PM-FGW loss
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• The target graph is g = (F,A) with

F =

(
f1

f2

)
;A =

(
0 1

1 0

)

• The prediction ŷa,h = (ĥ, F̂, Â) is

ĥ =

 1

h

1− h

 ; F̂ =

f1

f2

f2

 ; Â =

 0 a 1− a

a 0 0

1− a 0 0


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Neural network architecture

Input Set Of Features Nodes Embeddings

ENCODER TRANSFORMER GRAPH DECODER

Input data
dependent

MLP
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PM-FGW Loss

Prediction Padded Target

TRANSFORMER
ENCODER

TRANSFORMER
DECODER

Nodes queries

MLP

0
1
1
1

• The encoder extract a set of features x → (V1, ...,Vk) ∈ Rk×d

• The transformer translate them into M nodes embedding

(Z1, ...,ZM ) →∈ RM×d

• The decoder produce the graph following

ĥi = σ(MLPm(zi)) ∀i ∈ {1, . . . ,M}

F̂i = MLPf (zi) ∀i ∈ {1, . . . ,M}

Âi,j = σ(MLPs(zi + zj)) ∀i, j ∈ {1, . . . ,M}2

• Similar to Relationformer [Shit et al., 2022] but with symmetric adjacency

matrix. 13



Neural network architecture : the encoder

Input Set Of Features Nodes Embeddings

ENCODER TRANSFORMER GRAPH DECODER

Input data
dependent

MLP
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PM-FGW Loss

Prediction Padded Target
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ENCODER

TRANSFORMER
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MLP

0
1
1
1

About the encoder

• Architecture adapts to input modality.

• Can leverage pretrained models.

• Must extract a list of features to avoid vector bottleneck.

• List of feature can be seen as a distribution [De Bie et al., 2019].

• Examples:

• Text: token embeddings.

• Image: CNN features (no global pooling).

• Graph: GNN features (no global pooling).
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Numerical experiments



Graph prediction experiments

Datasets

• Coloring

• Input: 2D RGB images (100k train)

• Output: 4-color graph (up to 20 nodes).

• Toulouse & USCities

• Input: binary images (80k & 130k train)

• Output: road network (up to 20 nodes).

• QM9 & GDB13

• Input: Fingerprint (120k & 1300k train)

• Output: molecule graph (up to 9 & 13

nodes).

Compared methods

• FGWBary (known size)

[Brogat-Motte et al., 2022]

• Relationformer [Shit et al., 2022]

• Any2Graph (Ours)

FD : feature diffusion : F 7→ [F,AF]

[Barbe et al., 2020] 15



Prediction performances

Dataset Model
Graph Level Edge Level Node Level Acc.

Edit Dist. ↓ GI Acc. ↑ PMFGW ↓ Prec. ↑ Rec. ↑ Node ↑ Size ↑

Coloring

FGWBary-NN∗ 6.73 1.00 0.91 75.19 84.99 77.58 n.a.

FGWBary-ILE∗ 7.60 0.90 0.93 72.17 83.81 79.15 n.a.

Relationformer 5.47 18.14 0.32 80.39 86.34 92.68 99.32

Any2Graph 0.20 85.20 0.03 99.15 99.37 99.95 99.50

Toulouse

FGWBary-NN∗ 8.11 0.00 1.15 84.09 79.68 10.10 n.a.

FGWBary-ILE∗ 9.00 0.00 1.21 72.52 56.30 1.62 n.a.

Relationformer 0.13 93.28 0.02 99.25 99.24 99.25 98.30

Any2Graph 0.13 93.62 0.02 99.34 99.26 99.39 98.81

USCities
Relationformer 2.09 55.00 0.13 92.96 87.98 95.18 79.80

Any2Graph 1.86 58.10 0.12 92.91 90.85 95.70 78.95

QM9

FGWBary-NN∗ 5.55 1.00 0.96 87.81 70.78 78.62 n.a.

FGWBary-ILE∗ 3.54 7.10 0.59 80.40 75.14 91.47 n.a.

FGWBary-ILE∗ + FD 2.84 28.95 0.28 82.96 79.76 92.99 n.a.

Relationformer 9.15 0.05 0.48 21.42 4.77 99.28 91.80

Relationformer + FD 3.80 9.95 0.22 86.07 73.31 99.34 96.0

Any2Graph 3.44 7.50 0.21 86.21 77.27 99.26 93.65

Any2Graph + FD 2.13 29.85 0.14 90.19 88.08 99.77 95.45

GDB13

Relationformer 11.40 0.00 0.43 81.96 31.49 97.77 97.45

Relationformer + FD 8.83 0.01 0.29 84.14 55.89 97.57 98.65

Any2Graph 7.45 0.05 0.22 87.20 60.41 99.41 96.15

Any2Graph + FD 3.63 16.25 0.11 90.83 84.86 99.80 98.15

• Any2Graph is SOTA for graph prediction on all datasets.

• Feature diffusion helps on molecules [Brogat-Motte et al., 2022]. 16



Sensitivity analysis
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Figure 1: Edit dist.
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Figure 2: α = [1, 1, 1].
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Figure 3: α = [10, 1, 1].

Results on Coloring dataset

• Robustness to α (Fig 1.).

• Mask and features learned first (Fig 2.).

• Failure for large αA (Fig 1. and 3.).

• For increasing M edit distance is stable.

• Effective active nodes number do not

increase with M (Fig 4.)
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Figure 4: Effect of M .
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Computational Performances

Method Training Inference

FGWBary-ILE (K=25) n.a. 1

FGWBary-NN (K=10) 10 10

Relationformer 9k 20k

PM-FGW (ours) 3k 20k

Table 1: Computational Performances (In graph per second)

• FGWBary-ILE uses thresholding of weights yet still slow.

• FGWBary-NN with learned dictionary is a little faster.

• Relationformer and Any2Graph are fastest at inference.

• Any2Graph is slightly slower that Relationforme during training.
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Why diffusion of feature on molecules?

And hundreds
more !

Diffusion of features [Barbe et al., 2020]

F 7→ [F,AF]

• On some graphs, nodes features are not enough to predict the structure.

• Diffusion of features encode labels + labels of neighbors.

• Helps the model for structure identification with more information in the

linear term for molecule graphs.

19
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Why diffusion of feature on molecules?
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Figure 5: Without Feature Diffusion.
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Figure 6: With Feature Diffusion.

Diffusion of features [Barbe et al., 2020]

F 7→ [F,AF]

• On some graphs, nodes features are not enough to predict the structure.

• Diffusion of features encode labels + labels of neighbors.

• Helps the model for structure identification with more information in the

linear term for molecule graphs. 19



Conclusion

Input Set Of Features Nodes Embeddings

ENCODER TRANSFORMER GRAPH DECODER

Input data
dependent

MLP

MLP

PM-FGW Loss

Prediction Padded Target

TRANSFORMER
ENCODER

TRANSFORMER
DECODER

Nodes queries

MLP

0
1
1
1

Any2Graph [Krzakala et al., 2024]

• Generic framework for supervised graph prediction from any input.

• End-to-end trainable with a neural network with OT loss.

• Good performance on variety of (input/output) datasets.

Limits and future works

• Only tested on relatively small graphs (M ≤ 20).

• Use higher order relationship matrices (Power of Laplacian Lk).

• Investigate graph auto-encoders. 20



Thank you for your softmax(QKT )V !

Any2Graph model trained on Toulouse :

POT Python Optimal Transport library

• https://pot.readthedocs.io/en/stable/

• Solvers for OT problems.

• Backends in Numpy/Pytorch.

21
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Labeau, M. (2024).

Any2graph: Deep end-to-end supervised graph prediction with an

optimal transport loss.

24



References iv

Melnyk, I., Dognin, P., and Das, P. (2022).

Knowledge graph generation from text.

In Goldberg, Y., Kozareva, Z., and Zhang, Y., editors, Findings of the

Association for Computational Linguistics: EMNLP 2022, pages

1610–1622.

Memoli, F. (2011).

Gromov wasserstein distances and the metric approach to object

matching.

Foundations of Computational Mathematics, pages 1–71.
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Why not [X] OT loss?

Fused Gromov-Wasserstein [Vayer et al., 2020]

• h and ĥ can be normalized to sum to 1 and used as marginal weights.

• But : (Sub)-gradients on the masses are not very numerically stable.

• For multi-label learning use unbalanced OT [Frogner et al., 2015].

Unbalanced FGW [Thual et al., 2022]

• Works out of the bow with h and ĥ as marginal weights.

• But: many parameters to tune (did not manage to make it work).

Partial (F)GW [Chapel et al., 2020]

• Can force to move only the actual number of nodes.

• But: No weights on not active nodes so node classifier cannot be learned.
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Solving for PM-FGW

Conditional Gradient solver

min
T∈πM

⟨T,U⟩+ ⟨T,L⊗T⟩

with Ui,k = ℓh(ĥi, hk)+ ℓF (f̂i, fk)hk and (L⊗T)i,k =
∑

j,l Tj,lℓA(Âi,j , Ak,l)hkhl

• Solve iteratively linearized version of the loss with C(k) = U+ L⊗T(k).

• Each step requires :

• Solving a standard OT problem O(M3 logM).

• Selecting a linesearch step.

Computational complexity

• O(M3) factorization for PM-FGW (similar to [Peyré et al., 2016]).

• Closed form for the linesearch at each iteration.

• Typical convergence is 5-10 iteration in experiments.
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