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Optimal transport

Principle: Move mass in the most efficient way

• Problem introduced by Gaspard Monge in his memoire [Monge, 1781].

• Monge formulation seeks for a mapping between two mass distribution.

• Reformulated by Leonid Kantorovich to allow splitting [Kantorovich, 1942].

• Applications originally for resource allocation problems
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Discrete Optimal Transport
Distributions

Source s

Target t

Matrix C OT matrix                   

Kantorovitch formulation : OT Linear Program

When µs =
∑ns

i=1 aiδxs
i
and µt =

∑nt
i=1 biδxt

i

W p
p (µs, µt) = min

T≥0

∑
i,j

Ti,jCi,j

s.t.
∑
j

Ti,j = ai, ∀i and
∑
i

Ti,j = bj , ∀j

where C is a cost matrix with Ci,j = c(xs
i ,x

t
j) = ∥xs

i − xt
j∥p

• Solving the OT problem with network simplex is O(n3 log(n)) for n = ns = nt.

• Wp(µs, µt) is called the Wasserstein distance (EMD for p = 1).
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Discrete Optimal Transport
Distributions
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Matrix C OT matrix with samples
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Wasserstein distance

Wasserstein distance

W p
p (µs, µt) = min

T≥0

∑
i,j

Ti,j∥xs
i−xt

j∥p s.t.
∑
j

Ti,j = ai,∀i and
∑
i

Ti,j = bj , ∀j

In this case we have c(x,y) = ∥x− y∥p

• A.K.A. Earth Mover’s Distance (W 1
1 ) [Rubner et al., 2000].

• Useful between discrete distribution even without overlapping support.

• Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].

• Wasserstein barycenter: µ = argminµ

∑
i wiW

2
2 (µ, µi)
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OT for Machine Learning and Data Science

Distributions are everywhere in machine learning

• Images, vision, graphics, Time series, text, genes, proteins.

• Many datum and datasets can be seen as distributions.

• Optimal transport provides tools for comparing them with a meaningful geometry.

How to use OT for ML?

• As a loss to compare distributions (Wasserstein distance).

• To learn a mapping between distributions (OT mapping).

• To learn on non-standard data (structured data, graphs).

Illustration from the slides of Gabriel Peyré.
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OT for images processing and graphics

Image 1 Image 2

Distribution 1 Distribution 2Distribution 1 adapted

Image 1 adapted

Applications of OT for images processing and graphics

• Transporting pixels for color transfer [Ferradans et al., 2014].

• Transporting image patches for style transfer [Mroueh, 2019].

• Shape interpolation with OT barycenters [Solomon et al., 2015].
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Optimal Transport for Domain Adaptation
Dataset 

Class 1

Class 2

Samples 

Samples 

Classifier on 

Optimal transport 

Samples 

Samples 

Classification on transported samples

Samples 

Samples 

Classifier on 

Transport the data [Courty et al., 2016]

1. Estimate optimal transport between distributions.

2. Transport the training samples on target domain.

3. Learn a classifier on the transported training samples.

Can also be used to compensate for biased datasets [Gordaliza et al., 2019]

Transport the labels

• Label Propagation using OT matrix [Solomon et al., 2014, Redko et al., 2019].

• Optimize the target classifier [Courty et al., 2017, Damodaran et al., 2018].

• Change in proportion of classes [Redko et al., 2019, Rakotomamonjy et al., 2020].
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OT between graphs

Gromov-Wasserstein OT distance [Memoli, 2011]

• OT plan is alignements between nodes of two graphs.

• Minimize changes in pairwise relationships between nodes (preserve structure).

• OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].

• Applications on:

◦ Brain MRI alignment [Thual et al., 2022]
◦ Single cell data [Demetci et al., 2022, Tran et al., 2023]

• Barycenter (denoising or compression) of graphs [Vayer et al., 2018].
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OT between graphs
Noiseless graph BarycenterNoisy graphs samples
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Python Optimal Transport (POT)

The toolbox

• Website/documentation: https://pythonot.github.io/

• Github: https://github.com/PythonOT/POT

• Activity: 79 contributors, 2.6k stars, 5.5 M PyPI downloads, 1300 citations.

• Features: OT solvers from 81 papers, 58 examples in gallery.

• CI-CD: 97% test coverage, 100% PEP8 compliant with pre-commit.

• Maintained since 2017: 2 releases/year, 1.5k commits.

• Packages in PyPI (POT), Conda forge, Debian, Ubuntu.
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How to solve OT in Python?
Distributions

Source μs
Target μt

Matrix C OT matrix γ

Solving discrete OT with POT

1 import ot # import POT

2

3 # Xs and Xt are positions of source and target samples

4 C = ot.dist(Xs, Xt, metric = 'euclidean') # ground cost matrix

5 result = ot.solve(C, a=a, b=b) # returns an OTResult object

6

7 T = result.plan # get the OT plan

8 cost = result.value # get the OT cost

Gallery : https://pythonot.github.io/auto_examples/plot_OT_2D_samples.html 11 / 16
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How to solve OT in Python?
Distributions

Source μs
Target μt

Reg. OT matrix with λ=1e-3 Reg. OT matrix with λ=1e-2

Solving regularized discrete OT with POT (sinkhorn)

1 import ot # import POT

2

3 # Xs and Xt are positions of source and target samples

4 # reg is entropic regularization strength

5 result = ot.solve_sample(Xs, Xt, reg=0.1, metric='euclidean')

6

7 T = result.plan # get the OT plan

8 cost = result.value # get the OT cost
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OT barycenter between empirical distributions

Wasserstein (free support) barycenter with POT

1 from ot.lp import free_support_barycenter

2

3 X_list = [X1, X2] # list of locations of the measures

4 a_list = [a1, a2] # list of weights of the measures

5 w = [0.5, 0.5] # barycenter weights

6 X_init = np.random.randn(k, d) # initial barycenter locations

7 Xbary = free_support_barycenter(X_list, a_list, X_init,

weights=w)↪→

Gallery : Free support barycenter example 12 / 16
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Advanced feature : POT backends
POT Backends

• Automatic detection of type of inputs (Numpy, Pytorch, Tensorflow, Jax, Cupy).

• Coded in functions with the backend : nx = get_backend(C,a,b, ...) .

• Differentiation through the OT solvers (automatic or manual definition).

• Works with CPU and GPU tensors (similar to array-api)

Example in Pytorch

1 import ot

2 import torch

3

4 # differentiable loss (or OT plan)

5 Xs = torch.randn((100,2), requires_grad=True).cuda()

6 Xt = torch.randn((80,2)).cuda()

7 loss = ot.solve_sample(Xs, Xt, reg=0.1).value # runs on GPU

8 loss.backward() # gradients on Xs

9

10 # batched with C_batch a (batch, n, n) tensor of cost matrices

11 loss_batch = ot.solve_batch(C_batch, reg=0.1).value

12 loss_batch.mean().backward() # grads backprop. through C_batch
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Advanced features : other solvers in POT

Sliced OT (line, sphere, subspace) (Fused) Gromov-Wasserstein OT

Unbalanced and partial OT OT on Gaussian and Gaussian mixtures

Example Gallery: https://pythonot.github.io/auto_examples/index.html
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Conclusions and Q&A

Optimal Transport in Python

• POT is a well established library for optimal transport in Python.

• Both basic and more advanced OT solvers from the literature implemented.

• Backends for Numpy/Scipy, Pytorch, Cupy, Tensorflow and Jax.

• Many other examples in the gallery: https://pythonot.github.io/

• Other open source libraries: GeomLoss (GPU, wrapper in POT), OTT-JAX.
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OTGame (OT Puzzle game on android)

https://play.google.com/store/apps/details?id=com.flamary.otgame
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Gromov-Wasserstein and extensions

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

GWp
p(µs, µt) = min

T∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′
j,l|pTi,j Tk,l

with µs =
∑

i aiδxs
i
and µt =

∑
j bjδxt

j
and Di,k = ∥xs

i − xs
k∥, D′

j,l = ∥xt
j − xt

l∥
• Distance between metric measured spaces : across different spaces.

• Search for an OT plan that preserve the pairwise relationships between samples.

• Entropy regularized GW proposed in [Peyré et al., 2016].

• Fused GW interpolates between Wass. and GW [Vayer et al., 2018].
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