
Optimal Transport in Python:
A Practical Introduction with POT

Rémi Flamary, École polytechnique

October 30, 2025

PyData Paris 2025, Cité des Sciences et de l’Industrie, France

Table of content

Introduction to Optimal Transport
Optimal Transport problem and formulations
Wasserstein distance and geometry of OT

Optimal Transport for Machine Learning and Data Science
OT for images processing and graphics
OT for Domain Adaptation
OT between graphs

Hands-on Examples with the POT Library
POT: Python Optimal Transport
Examples with POT
Advanced features of POT

Conclusion and Q&A

2 / 16

Optimal transport

Principle: Move mass in the most efficient way

• Problem introduced by Gaspard Monge in his memoire [Monge, 1781].

• Monge formulation seeks for a mapping between two mass distribution.

• Reformulated by Leonid Kantorovich to allow splitting [Kantorovich, 1942].

• Applications originally for resource allocation problems

3 / 16

Discrete Optimal Transport
Distributions

Source s

Target t

Matrix C OT matrix

Kantorovitch formulation : OT Linear Program

When µs =
∑ns

i=1 aiδxs
i
and µt =

∑nt
i=1 biδxt

i

W p
p (µs, µt) = min

T≥0

∑
i,j

Ti,jCi,j

s.t.
∑
j

Ti,j = ai, ∀i and
∑
i

Ti,j = bj , ∀j

where C is a cost matrix with Ci,j = c(xs
i ,x

t
j) = ∥xs

i − xt
j∥p

• Solving the OT problem with network simplex is O(n3 log(n)) for n = ns = nt.

• Wp(µs, µt) is called the Wasserstein distance (EMD for p = 1).

4 / 16

Discrete Optimal Transport
Distributions

Source μs
Target μt

Matrix C OT matrix γ

Kantorovitch formulation : OT Linear Program

When µs =
∑ns

i=1 aiδxs
i
and µt =

∑nt
i=1 biδxt

i

W p
p (µs, µt) = min

T≥0

∑
i,j

Ti,jCi,j

s.t.
∑
j

Ti,j = ai, ∀i and
∑
i

Ti,j = bj , ∀j

where C is a cost matrix with Ci,j = c(xs
i ,x

t
j) = ∥xs

i − xt
j∥p

• Solving the OT problem with network simplex is O(n3 log(n)) for n = ns = nt.

• Wp(µs, µt) is called the Wasserstein distance (EMD for p = 1).

4 / 16

Discrete Optimal Transport
Distributions

Source μs
Target μt

Matrix C OT matrix with samples

Kantorovitch formulation : OT Linear Program

When µs =
∑ns

i=1 aiδxs
i
and µt =

∑nt
i=1 biδxt

i

W p
p (µs, µt) = min

T≥0

∑
i,j

Ti,jCi,j

s.t.
∑
j

Ti,j = ai, ∀i and
∑
i

Ti,j = bj , ∀j

where C is a cost matrix with Ci,j = c(xs
i ,x

t
j) = ∥xs

i − xt
j∥p

• Solving the OT problem with network simplex is O(n3 log(n)) for n = ns = nt.

• Wp(µs, µt) is called the Wasserstein distance (EMD for p = 1).

4 / 16

Wasserstein distance

Wasserstein distance

W p
p (µs, µt) = min

T≥0

∑
i,j

Ti,j∥xs
i−xt

j∥p s.t.
∑
j

Ti,j = ai,∀i and
∑
i

Ti,j = bj , ∀j

In this case we have c(x,y) = ∥x− y∥p

• A.K.A. Earth Mover’s Distance (W 1
1) [Rubner et al., 2000].

• Useful between discrete distribution even without overlapping support.

• Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].

• Wasserstein barycenter: µ = argminµ

∑
i wiW

2
2 (µ, µi)

5 / 16

Wasserstein distance

Matrix C

Wasserstein distance

W p
p (µs, µt) = min

T≥0

∑
i,j

Ti,j∥xs
i−xt

j∥p s.t.
∑
j

Ti,j = ai,∀i and
∑
i

Ti,j = bj , ∀j

In this case we have c(x,y) = ∥x− y∥p

• A.K.A. Earth Mover’s Distance (W 1
1) [Rubner et al., 2000].

• Useful between discrete distribution even without overlapping support.

• Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].

• Wasserstein barycenter: µ = argminµ

∑
i wiW

2
2 (µ, µi)

5 / 16

Wasserstein distance

Matrix C

Wasserstein distance

W p
p (µs, µt) = min

T≥0

∑
i,j

Ti,j∥xs
i−xt

j∥p s.t.
∑
j

Ti,j = ai,∀i and
∑
i

Ti,j = bj , ∀j

In this case we have c(x,y) = ∥x− y∥p

• A.K.A. Earth Mover’s Distance (W 1
1) [Rubner et al., 2000].

• Useful between discrete distribution even without overlapping support.

• Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].

• Wasserstein barycenter: µ = argminµ

∑
i wiW

2
2 (µ, µi)

5 / 16

Outline

Introduction to Optimal Transport
Optimal Transport problem and formulations
Wasserstein distance and geometry of OT

Optimal Transport for Machine Learning and Data Science
OT for images processing and graphics
OT for Domain Adaptation
OT between graphs

Hands-on Examples with the POT Library
POT: Python Optimal Transport
Examples with POT
Advanced features of POT

Conclusion and Q&A

5 / 16

OT for Machine Learning and Data Science

Distributions are everywhere in machine learning

• Images, vision, graphics, Time series, text, genes, proteins.

• Many datum and datasets can be seen as distributions.

• Optimal transport provides tools for comparing them with a meaningful geometry.

How to use OT for ML?

• As a loss to compare distributions (Wasserstein distance).

• To learn a mapping between distributions (OT mapping).

• To learn on non-standard data (structured data, graphs).

Illustration from the slides of Gabriel Peyré.

6 / 16

OT for Machine Learning and Data Science

Distributions are everywhere in machine learning

• Images, vision, graphics, Time series, text, genes, proteins.

• Many datum and datasets can be seen as distributions.

• Optimal transport provides tools for comparing them with a meaningful geometry.

How to use OT for ML?

• As a loss to compare distributions (Wasserstein distance).

• To learn a mapping between distributions (OT mapping).

• To learn on non-standard data (structured data, graphs).

Illustration from the slides of Gabriel Peyré.

6 / 16

OT for images processing and graphics

Image 1 Image 2

Distribution 1 Distribution 2Distribution 1 adapted

Image 1 adapted

Applications of OT for images processing and graphics

• Transporting pixels for color transfer [Ferradans et al., 2014].

• Transporting image patches for style transfer [Mroueh, 2019].

• Shape interpolation with OT barycenters [Solomon et al., 2015].

7 / 16

OT for images processing and graphics

Applications of OT for images processing and graphics

• Transporting pixels for color transfer [Ferradans et al., 2014].

• Transporting image patches for style transfer [Mroueh, 2019].

• Shape interpolation with OT barycenters [Solomon et al., 2015].

7 / 16

OT for images processing and graphics

Applications of OT for images processing and graphics

• Transporting pixels for color transfer [Ferradans et al., 2014].

• Transporting image patches for style transfer [Mroueh, 2019].

• Shape interpolation with OT barycenters [Solomon et al., 2015].

7 / 16

Optimal Transport for Domain Adaptation
Dataset

Class 1

Class 2

Samples

Samples

Classifier on

Optimal transport

Samples

Samples

Classification on transported samples

Samples

Samples

Classifier on

Transport the data [Courty et al., 2016]

1. Estimate optimal transport between distributions.

2. Transport the training samples on target domain.

3. Learn a classifier on the transported training samples.

Can also be used to compensate for biased datasets [Gordaliza et al., 2019]

Transport the labels

• Label Propagation using OT matrix [Solomon et al., 2014, Redko et al., 2019].

• Optimize the target classifier [Courty et al., 2017, Damodaran et al., 2018].

• Change in proportion of classes [Redko et al., 2019, Rakotomamonjy et al., 2020].
8 / 16

OT between graphs

Gromov-Wasserstein OT distance [Memoli, 2011]

• OT plan is alignements between nodes of two graphs.

• Minimize changes in pairwise relationships between nodes (preserve structure).

• OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].

• Applications on:

◦ Brain MRI alignment [Thual et al., 2022]
◦ Single cell data [Demetci et al., 2022, Tran et al., 2023]

• Barycenter (denoising or compression) of graphs [Vayer et al., 2018].

9 / 16

OT between graphs

Gromov-Wasserstein OT distance [Memoli, 2011]

• OT plan is alignements between nodes of two graphs.

• Minimize changes in pairwise relationships between nodes (preserve structure).

• OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].

• Applications on:

◦ Brain MRI alignment [Thual et al., 2022]
◦ Single cell data [Demetci et al., 2022, Tran et al., 2023]

• Barycenter (denoising or compression) of graphs [Vayer et al., 2018].

9 / 16

OT between graphs

Gromov-Wasserstein OT distance [Memoli, 2011]

• OT plan is alignements between nodes of two graphs.

• Minimize changes in pairwise relationships between nodes (preserve structure).

• OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].

• Applications on:

◦ Brain MRI alignment [Thual et al., 2022]
◦ Single cell data [Demetci et al., 2022, Tran et al., 2023]

• Barycenter (denoising or compression) of graphs [Vayer et al., 2018].

9 / 16

OT between graphs
Noiseless graph BarycenterNoisy graphs samples

Gromov-Wasserstein OT distance [Memoli, 2011]

• OT plan is alignements between nodes of two graphs.

• Minimize changes in pairwise relationships between nodes (preserve structure).

• OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].

• Applications on:

◦ Brain MRI alignment [Thual et al., 2022]
◦ Single cell data [Demetci et al., 2022, Tran et al., 2023]

• Barycenter (denoising or compression) of graphs [Vayer et al., 2018].

9 / 16

Outline

Introduction to Optimal Transport
Optimal Transport problem and formulations
Wasserstein distance and geometry of OT

Optimal Transport for Machine Learning and Data Science
OT for images processing and graphics
OT for Domain Adaptation
OT between graphs

Hands-on Examples with the POT Library
POT: Python Optimal Transport
Examples with POT
Advanced features of POT

Conclusion and Q&A

9 / 16

Python Optimal Transport (POT)

The toolbox

• Website/documentation: https://pythonot.github.io/

• Github: https://github.com/PythonOT/POT

• Activity: 79 contributors, 2.6k stars, 5.5 M PyPI downloads, 1300 citations.

• Features: OT solvers from 81 papers, 58 examples in gallery.

• CI-CD: 97% test coverage, 100% PEP8 compliant with pre-commit.

• Maintained since 2017: 2 releases/year, 1.5k commits.

• Packages in PyPI (POT), Conda forge, Debian, Ubuntu.

10 / 16

https://pythonot.github.io/
https://github.com/PythonOT/POT

How to solve OT in Python?
Distributions

Source μs
Target μt

Matrix C OT matrix γ

Solving discrete OT with POT

1 import ot # import POT

2

3 # Xs and Xt are positions of source and target samples

4 C = ot.dist(Xs, Xt, metric = 'euclidean') # ground cost matrix

5 result = ot.solve(C, a=a, b=b) # returns an OTResult object

6

7 T = result.plan # get the OT plan

8 cost = result.value # get the OT cost

Gallery : https://pythonot.github.io/auto_examples/plot_OT_2D_samples.html 11 / 16

https://pythonot.github.io/auto_examples/plot_OT_2D_samples.html

How to solve OT in Python?
Distributions

Source μs
Target μt

Matrix C OT matrix γ

Solving empirical discrete OT with POT

1 import ot # import POT

2

3 # Xs and Xt are positions of source and target samples

4 # default values uniform weights for a,b

5 result = ot.solve_sample(Xs, Xt, metric='euclidean')

6

7 T = result.plan # get the OT plan

8 cost = result.value # get the OT cost

Gallery : https://pythonot.github.io/auto_examples/plot_OT_2D_samples.html 11 / 16

https://pythonot.github.io/auto_examples/plot_OT_2D_samples.html

How to solve OT in Python?
Distributions

Source μs
Target μt

Reg. OT matrix with λ=1e-3 Reg. OT matrix with λ=1e-2

Solving regularized discrete OT with POT (sinkhorn)

1 import ot # import POT

2

3 # Xs and Xt are positions of source and target samples

4 # reg is entropic regularization strength

5 result = ot.solve_sample(Xs, Xt, reg=0.1, metric='euclidean')

6

7 T = result.plan # get the OT plan

8 cost = result.value # get the OT cost

Gallery : https://pythonot.github.io/auto_examples/plot_OT_2D_samples.html 11 / 16

https://pythonot.github.io/auto_examples/plot_OT_2D_samples.html

OT barycenter between empirical distributions

Wasserstein (free support) barycenter with POT

1 from ot.lp import free_support_barycenter

2

3 X_list = [X1, X2] # list of locations of the measures

4 a_list = [a1, a2] # list of weights of the measures

5 w = [0.5, 0.5] # barycenter weights

6 X_init = np.random.randn(k, d) # initial barycenter locations

7 Xbary = free_support_barycenter(X_list, a_list, X_init,

weights=w)↪→

Gallery : Free support barycenter example 12 / 16

https://pythonot.github.io/auto_examples/barycenters/plot_free_support_barycenter.html

Advanced feature : POT backends
POT Backends

• Automatic detection of type of inputs (Numpy, Pytorch, Tensorflow, Jax, Cupy).

• Coded in functions with the backend : nx = get_backend(C,a,b, ...) .

• Differentiation through the OT solvers (automatic or manual definition).

• Works with CPU and GPU tensors (similar to array-api)

Example in Pytorch

1 import ot

2 import torch

3

4 # differentiable loss (or OT plan)

5 Xs = torch.randn((100,2), requires_grad=True).cuda()

6 Xt = torch.randn((80,2)).cuda()

7 loss = ot.solve_sample(Xs, Xt, reg=0.1).value # runs on GPU

8 loss.backward() # gradients on Xs

9

10 # batched with C_batch a (batch, n, n) tensor of cost matrices

11 loss_batch = ot.solve_batch(C_batch, reg=0.1).value

12 loss_batch.mean().backward() # grads backprop. through C_batch

13 / 16

Advanced features : other solvers in POT

Sliced OT (line, sphere, subspace) (Fused) Gromov-Wasserstein OT

Unbalanced and partial OT OT on Gaussian and Gaussian mixtures

Example Gallery: https://pythonot.github.io/auto_examples/index.html
14 / 16

https://pythonot.github.io/auto_examples/index.html

Outline

Introduction to Optimal Transport
Optimal Transport problem and formulations
Wasserstein distance and geometry of OT

Optimal Transport for Machine Learning and Data Science
OT for images processing and graphics
OT for Domain Adaptation
OT between graphs

Hands-on Examples with the POT Library
POT: Python Optimal Transport
Examples with POT
Advanced features of POT

Conclusion and Q&A

14 / 16

Acknowledgements

POT contributors

Fundings

15 / 16

Conclusions and Q&A

Optimal Transport in Python

• POT is a well established library for optimal transport in Python.

• Both basic and more advanced OT solvers from the literature implemented.

• Backends for Numpy/Scipy, Pytorch, Cupy, Tensorflow and Jax.

• Many other examples in the gallery: https://pythonot.github.io/

• Other open source libraries: GeomLoss (GPU, wrapper in POT), OTT-JAX.

16 / 16

https://pythonot.github.io/

OTGame (OT Puzzle game on android)

https://play.google.com/store/apps/details?id=com.flamary.otgame

17 / 16

https://play.google.com/store/apps/details?id=com.flamary.otgame

Gromov-Wasserstein and extensions

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

GWp
p(µs, µt) = min

T∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′
j,l|pTi,j Tk,l

with µs =
∑

i aiδxs
i
and µt =

∑
j bjδxt

j
and Di,k = ∥xs

i − xs
k∥, D′

j,l = ∥xt
j − xt

l∥
• Distance between metric measured spaces : across different spaces.

• Search for an OT plan that preserve the pairwise relationships between samples.

• Entropy regularized GW proposed in [Peyré et al., 2016].

• Fused GW interpolates between Wass. and GW [Vayer et al., 2018].

18 / 16

Gromov-Wasserstein and extensions

a

b

FGW for discrete distributions [Vayer et al., 2018]

FGWp
p(µs, µt) = min

T∈Π(µs,µt)

∑
i,j,k,l

(
(1− α)Cq

i,j + α|Di,k −D′
j,l|q

)p
Ti,j Tk,l

with µs =
∑

i aiδxs
i
and µt =

∑
j bjδxt

j
and Di,k = ∥xs

i − xs
k∥, D′

j,l = ∥xt
j − xt

l∥
• Distance between metric measured spaces : across different spaces.

• Search for an OT plan that preserve the pairwise relationships between samples.

• Entropy regularized GW proposed in [Peyré et al., 2016].

• Fused GW interpolates between Wass. and GW [Vayer et al., 2018].

18 / 16

References I

[Courty et al., 2016] Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2016).

Optimal transport for domain adaptation.

Pattern Analysis and Machine Intelligence, IEEE Transactions on.

[Courty et al., 2017] Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2017).

Optimal transport for domain adaptation.

IEEETPAMI, 39(9):1853–1865.

[Cuturi, 2013] Cuturi, M. (2013).

Sinkhorn distances: Lightspeed computation of optimal transport.

In NIPS, pages 2292–2300.

[Damodaran et al., 2018] Damodaran, B. B., Kellenberger, B., Flamary, R., Tuia, D., and
Courty, N. (2018).

Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation.

[Demetci et al., 2022] Demetci, P., Santorella, R., Chakravarthy, M., Sandstede, B., and
Singh, R. (2022).

Scotv2: Single-cell multiomic alignment with disproportionate cell-type representation.

Journal of Computational Biology, 29(11):1213–1228.

19 / 16

References II

[Ferradans et al., 2014] Ferradans, S., Papadakis, N., Peyré, G., and Aujol, J.-F. (2014).

Regularized discrete optimal transport.

SIAM Journal on Imaging Sciences, 7(3):1853–1882.

[Gordaliza et al., 2019] Gordaliza, P., Del Barrio, E., Fabrice, G., and Loubes, J.-M. (2019).

Obtaining fairness using optimal transport theory.

In International Conference on Machine Learning, pages 2357–2365. PMLR.

[Kantorovich, 1942] Kantorovich, L. (1942).

On the translocation of masses.

C.R. (Doklady) Acad. Sci. URSS (N.S.), 37:199–201.

[Memoli, 2011] Memoli, F. (2011).

Gromov wasserstein distances and the metric approach to object matching.

Foundations of Computational Mathematics, pages 1–71.

[Monge, 1781] Monge, G. (1781).

Mémoire sur la théorie des déblais et des remblais.

De l’Imprimerie Royale.

20 / 16

References III

[Mroueh, 2019] Mroueh, Y. (2019).

Wasserstein style transfer.

arXiv preprint arXiv:1905.12828.

[Peyré et al., 2016] Peyré, G., Cuturi, M., and Solomon, J. (2016).

Gromov-wasserstein averaging of kernel and distance matrices.

In ICML, pages 2664–2672.

[Rakotomamonjy et al., 2020] Rakotomamonjy, A., Flamary, R., Gasso, G., Alaya, M., Berar,
M., and Courty, N. (2020).

Match and reweight strategy for generalized target shift.

[Redko et al., 2019] Redko, I., Courty, N., Flamary, R., and Tuia, D. (2019).

Optimal transport for multi-source domain adaptation under target shift.

In International Conference on Artificial Intelligence and Statistics (AISTAT).

[Rubner et al., 2000] Rubner, Y., Tomasi, C., and Guibas, L. J. (2000).

The earth mover’s distance as a metric for image retrieval.

International journal of computer vision, 40(2):99–121.

21 / 16

References IV

[Solomon et al., 2015] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A.,
Nguyen, A., Du, T., and Guibas, L. (2015).

Convolutional wasserstein distances: Efficient optimal transportation on geometric domains.

ACM Transactions on Graphics (TOG), 34(4):66.

[Solomon et al., 2016] Solomon, J., Peyré, G., Kim, V. G., and Sra, S. (2016).

Entropic metric alignment for correspondence problems.

ACM Transactions on Graphics (TOG), 35(4):72.

[Solomon et al., 2014] Solomon, J., Rustamov, R., Guibas, L., and Butscher, A. (2014).

Wasserstein propagation for semi-supervised learning.

In International Conference on Machine Learning, pages 306–314. PMLR.

[Thual et al., 2022] Thual, A., Tran, H., Zemskova, T., Courty, N., Flamary, R., Dehaene, S.,
and Thirion, B. (2022).

Aligning individual brains with fused unbalanced gromov-wasserstein.

In Neural Information Processing Systems (NeurIPS).

22 / 16

References V

[Tran et al., 2023] Tran, Q. H., Janati, H., Courty, N., Flamary, R., Redko, I., Demetci, P.,
and Singh, R. (2023).

Unbalanced co-optimal transport.

In Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI).

[Vayer et al., 2018] Vayer, T., Chapel, L., Flamary, R., Tavenard, R., and Courty, N. (2018).

Fused gromov-wasserstein distance for structured objects: theoretical foundations and
mathematical properties.

23 / 16

	Introduction to Optimal Transport
	Optimal Transport problem and formulations
	Wasserstein distance and geometry of OT

	Optimal Transport for Machine Learning and Data Science
	OT for images processing and graphics
	OT for Domain Adaptation
	OT between graphs

	Hands-on Examples with the POT Library
	POT: Python Optimal Transport
	Examples with POT
	Advanced features of POT

	Conclusion and Q&A

