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Optimal transport

Y1
Y2

Ys

Principle: Move mass in the most efficient way
e Problem introduced by Gaspard Monge in his memoire [Monge, 1781].
e Monge formulation seeks for a mapping between two mass distribution.
e Reformulated by Leonid Kantorovich to allow splitting [Kantorovich, 1942].

e Applications originally for resource allocation problems
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Discrete Optimal Transport
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Kantorovitch formulation : OT Linear Program
When 115 = 377 aidxs and py = 300 bidye
WE (s, pe) = min ZTi,jCi,j
i
s.t. ZTi’j = ai,Vi and ZTi’j = bj,Vj
J i
where C is a cost matrix with C; ; = c(x},x}) = ||x; — x||?
e Solving the OT problem with network simplex is O(n®log(n)) for n = ns = n,.

e W, (s, ue) is called the Wasserstein distance (EMD for p = 1).
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Kantorovitch formulation : OT Linear Program
When 115 = 377 aidxs and py = 3700 bidye
W (s, ) = min ZTi,jCi,j
ivj
s.t. Z,Ti’j =a;,Vi and ZTi’j =10b;,Vj
j i
where C is a cost matrix with C; ; = ¢(x},x}) = ||x; — x}||?
e Solving the OT problem with network simplex is O(n®log(n)) for n = ns = n,.

e W, (s, ue) is called the Wasserstein distance (EMD for p = 1).
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Discrete Optimal Transport
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Kantorovitch formulation : OT Linear Program
When j1s = 377 a;dx: and pup = Y070 bidye

Wp'(ks,pe) = min > Ti;Ci;

i,J
st. » Tij=a,Vi and Y Tij=0b;,Vj
J i
where C is a cost matrix with C; ; = c(x7, x}) = [|x] — x||?

e Solving the OT problem with network simplex is O(n®log(n)) for n = ns = n,.

o Wy (s, pue) is called the Wasserstein distance (EMD for p = 1).
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Wasserstein distance

Source distribution Divergences (scaled)
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Target distributions

Wasserstein distance

Wg(us,/it) = g[‘n;r(l] ZTi,ijffx;-Hp s.t. ZTi’j = ai,Vi and ZTi’j = bj,Vj
2 7 ; P

In this case we have c(;i7 y)=|x—-yl?
e A.K.A. Earth Mover's Distance (W7) [Rubner et al., 2000].
e Useful between discrete distribution even without overlapping support.
e Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].
o Wasserstein barycenter: [1 = argmin,, >, w; W5 (, j1;)
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Wasserstein distance

L2 Wasserstein Matrix C

AN

Wasserstein distance

WE (ps, pe) = mln ZTJHX —xj|P st ZTM =a;,Vi and ZTM =b;,Vj
In this case we have c(x y)=|x—-yl? l

e A.K.A. Earth Mover’s Distance (W7) [Rubner et al., 2000].

e Useful between discrete distribution even without overlapping support.

e Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].

o Wasserstein barycenter: i = argmin,, >, w; W5 (u, j1;)
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Wasserstein distance

L2 Wasserstein Matrix C

Wasserstein distance

W (s, 1) = min ZTJHX =GP st > Tiy=a,Vi and Y T =b;,Vj
In this case we have c(x y)=|x—-yl? 1

e A.K.A. Earth Mover’s Distance (W7) [Rubner et al., 2000].

e Useful between discrete distribution even without overlapping support.

e Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].

o Wasserstein barycenter: i = argmin,, >, w; W5 (u, j1;)
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Optimal Transport for Machine Learning and Data Science
OT for images processing and graphics
OT for Domain Adaptation
OT between graphs
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Distributions are everywhere in machine learning

e Images, vision, graphics, Time series, text, genes, proteins.

e Many datum and datasets can be seen as distributions.

e Optimal transport provides tools for comparing them with a meaningful geometry.
How to use OT for ML?

e As a loss to compare distributions (Wasserstein distance).

e To learn a mapping between distributions (OT mapping).

e To learn on non-standard data (structured data, graphs).

lllustration from the slides of Gabriel Peyré.
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OT for images processing and graphics

Distribution 1 Distribution 1 adapted Distribution 2
Image 1 Image 1 adapted Image 2

Applications of OT for images processing and graphics
e Transporting pixels for color transfer [Ferradans et al., 2014].
e Transporting image patches for style transfer [Mroueh, 2019].
e Shape interpolation with OT barycenters [Solomon et al., 2015].
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Optimal Transport for Domain Adaptation

Dataset Optimal transport Classification on transported samples

++ Class 1
OO Class 2

Samples X Samples T, (x})

Samples x!

Samples x!

/== Classifier onx; — Classifier on T, (x)

Transport the data [Courty et al., 2016]
1. Estimate optimal transport between distributions.
2. Transport the training samples on target domain.
3. Learn a classifier on the transported training samples.

Can also be used to compensate for biased datasets [Gordaliza et al., 2019]

Transport the labels
e Label Propagation using OT matrix [Solomon et al., 2014, Redko et al., 2019].
e Optimize the target classifier [Courty et al., 2017, Damodaran et al., 2018].

e Change in proportion of classes [Redko et al., 2019, Rakotomamonjy et al., 2020].
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OT between graphs
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Gromov-Wasserstein OT distance [Memoli, 2011]

e OT plan is alignements between nodes of two graphs.

e Minimize changes in pairwise relationships between nodes (preserve structure).
e OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].
e Applications on:

o Brain MRI alignment [Thual et al., 2022]
o Single cell data [Demetci et al., 2022, Tran et al., 2023]

e Barycenter (denoising or compression) of graphs [Vayer et al., 2018].
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OT between graphs
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Gromov-Wasserstein OT distance [Memoli, 2011]

e OT plan is alignements between nodes of two graphs.

e Minimize changes in pairwise relationships between nodes (preserve structure).
e OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].
e Applications on:

o Brain MRI alignment [Thual et al., 2022]
o Single cell data [Demetci et al., 2022, Tran et al., 2023]

Barycenter (denoising or compression) of graphs [Vayer et al., 2018].
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OT between graphs
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Gromov-Wasserstein OT distance [Memoli, 2011]

e OT plan is alignements between nodes of two graphs.

e Minimize changes in pairwise relationships between nodes (preserve structure).

e OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].
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e Barycenter (denoising or compression) of graphs [Vayer et al., 2018].
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OT between graphs

Noiseless graph Noisy graphs samples Barycenter

Gromov-Wasserstein OT distance [Memoli, 2011]
e OT plan is alignements between nodes of two graphs.
e Minimize changes in pairwise relationships between nodes (preserve structure).

e OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].

Applications on:

o Brain MRI alignment [Thual et al., 2022]
o Single cell data [Demetci et al., 2022, Tran et al., 2023]

Barycenter (denoising or compression) of graphs [Vayer et al., 2018].
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Hands-on Examples with the POT Library
POT: Python Optimal Transport
Examples with POT
Advanced features of POT
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Python Optimal Transport (POT)
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The toolbox

Website/documentation: https://pythonot.github.io/

Github: https://github.com/Python0T/POT

Activity: 79 contributors, 2.6k stars, 5.5 M PyPI downloads, 1300 citations.
Features: OT solvers from 81 papers, 58 examples in gallery.

CI-CD: 97% test coverage, 100% PEP8 compliant with pre-commit.
Maintained since 2017: 2 releases/year, 1.5k commits.

Packages in PyPl (POT), Conda forge, Debian, Ubuntu.
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How to solve OT in Python?

Distributions Matrix C OT matrix y
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Solving discrete OT with POT

1 import ot # wmport POT

2
3 # Xs and Xt are positions of source and target samples

4 C = ot.dist(Xs, Xt, metric = 'euclidean') # ground cost matriz
5 result = ot.solve(C, a=a, b=b) # returns an OTResult object
6
7
8

T = result.plan # get the OT plan
cost = result.value # get the 0T cost

Gallery : https://pythonot.github.io/auto_examples/plot_0T_2D_samples.html 11/16
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How to solve OT in Python?
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Solving empirical discrete OT with POT

1 import ot # wmport POT

2
3 # Xs and Xt are positions of source and target samples
4 # default wvalues uniform weights for a,bd

5 result = ot.solve_sample(Xs, Xt, metric='euclidean')

6

-

8

T = result.plan # get the OT plan
cost = result.value # get the 0T cost

Gallery : https://pythonot.github.io/auto_examples/plot_0T_2D_samples.html 11/16


https://pythonot.github.io/auto_examples/plot_OT_2D_samples.html

How to solve OT in Python?

Solving regularized discrete OT with POT (sinkhorn)

Distributions

Reg. OT matrix with A=1e-3
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Reg. OT matrix with A=1e-2

7

8

import ot # import POT

# Xs and Xt are positions of source and target samples

# reg 1s entropic regularization strength

result = ot.solve_sample(Xs, Xt, reg=0.1, metric='euclidean')

T = result.plan # get the OT plan

cost = result.value

# get the OT cost

Gallery : https://pythonot.github.io/auto_examples/plot_0T_2D_samples.html
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OT barycenter between empirical distributions

Data measures and their barycenter
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Wasserstein (free support) barycenter with POT

1 from ot.lp import free_support_barycenter

2

3 X_list = [X1, X2] # list of locations of the measures

4 a_list = [al, a2] # list of weights of the measures

5 w = [0.5, 0.5] # barycenter weights

6 X_init = np.random.randn(k, d) # initial barycenter locations
7 Xbary = free_support_barycenter(X_list, a_list, X_init,

— weights=w)

Gallery : Free support barycenter example 12/16


https://pythonot.github.io/auto_examples/barycenters/plot_free_support_barycenter.html

Advanced feature : POT backends

POT Backends

e Automatic detection of type of inputs (Numpy, Pytorch, Tensorflow, Jax, Cupy).

e Coded in functions with the backend : nx = get_backend(C,a,b, ...) .
e Differentiation through the OT solvers (automatic or manual definition).
e Works with CPU and GPU tensors (similar to array-api)

Example in Pytorch

1 import ot
2 import torch

# differentiable loss (or OT plan)

Xs = torch.randn((100,2), requires_grad=True).cuda()

Xt = torch.randn((80,2)) .cuda()

loss = ot.solve_sample(Xs, Xt, reg=0.1).value # runs on GPU
loss.backward() # gradients on Xs

© ® N o u A~ W

10 # batched with C_batch a (batch, n, n) tensor of cost matrices
11 loss_batch = ot.solve_batch(C_batch, reg=0.1).value
12 loss_batch.mean() .backward() # grads backprop. through C_batch
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Advanced features : other solvers in POT

Sliced OT (line, sphere, subspace) (Fused) Gromov-Wasserstein OT
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Example Gallery: https://pythonot.github.io/auto_examples/index.html 14/16
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Conclusions and Q&A

R Link to slides

Examples gallery

This is a gallery of al the POT example files

OT and regularized OT

Quickstart Guide

Optimal Transport in Python

e POT is a well established library for optimal transport in Python.

e Both basic and more advanced OT solvers from the literature implemented.

e Backends for Numpy/Scipy, Pytorch, Cupy, Tensorflow and Jax.
e Many other examples in the gallery: https://pythonot.github.io/
[ ]

Other open source libraries: GeomLoss (GPU, wrapper in POT), OTT-JAX.
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OTGame (OT Puzzle game on android)

1
'@ Standard game 1/9 Timer:19s New

https://play.google.com/store/apps/details?id=com.flamary.otgame
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Gromov-Wasserstein and extensions

SEES

|dx (z,2") — dy (y,)

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

(s = i D;,— D) |PTs; T
gWP(/L:Ut) TEI'?(I:.?,m,) Jzkl| i,k J,l| i, Lkl

with ps =37, aidx; and p = 37, b;0, : and D; i, = ||x — %3, D}, = [|Ix5 — x|
e Distance between metric measured spaces : across different spaces.

e Search for an OT plan that preserve the pairwise relationships between samples.
e Entropy regularized GW proposed in [Peyré et al., 2016].
e Fused GW interpolates between Wass. and GW [Vayer et al., 2018].
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Gromov-Wasserstein and extensions

Q bj

FGW for discrete distributions [Vayer et al., 2018]

FOWP (e, 1) = Terlﬁlir}m S (A= a)C + ol Dk — Dy |*) Ty Te
= i,5,k,1

H — . . X . _ s s o t t
with j1o = 3, a:6: and e = 36,60 and Dy =[x — xill, Dy =[x = x|
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