Optimal Transport in Python:
A Practical Introduction with POT

Rémi Flamary, Ecole polytechnique

October 30, 2025

PyData Paris 2025, Cité des Sciences et de I'Industrie, France

Table of content

Introduction to Optimal Transport
Optimal Transport problem and formulations
Wasserstein distance and geometry of OT

Optimal Transport for Machine Learning and Data Science
OT for images processing and graphics
OT for Domain Adaptation
OT between graphs

Hands-on Examples with the POT Library
POT: Python Optimal Transport

Examples with POT
Advanced features of POT

Conclusion and Q&A

2/16

Optimal transport

Y1
Y2

Ys

Principle: Move mass in the most efficient way
e Problem introduced by Gaspard Monge in his memoire [Monge, 1781].
e Monge formulation seeks for a mapping between two mass distribution.
e Reformulated by Leonid Kantorovich to allow splitting [Kantorovich, 1942].

e Applications originally for resource allocation problems

3/16

Discrete Optimal Transport

Distributions Matrix C OT matrix y

[Source ps
B Target ye

Kantorovitch formulation : OT Linear Program
When 115 = 377 aidxs and py = 300 bidye
WE (s, pe) = min ZTi,jCi,j
i
s.t. ZTi’j = ai,Vi and ZTi’j = bj,Vj
J i
where C is a cost matrix with C; ; = c(x},x}) = ||x; — x||?
e Solving the OT problem with network simplex is O(n®log(n)) for n = ns = n,.

e W, (s, ue) is called the Wasserstein distance (EMD for p = 1).

4/16

Discrete Optimal Transport

Distributions Matrix C OT matrix y
° E XS
°
[] °
® o go
@ Source g
d ® Target u;
% o
®8
]
° ‘K
e ©

Kantorovitch formulation : OT Linear Program
When 115 = 377 aidxs and py = 3700 bidye
W (s,) = min ZTi,jCi,j
ivj
s.t. Z,Ti’j =a;,Vi and ZTi’j =10b;,Vj
j i
where C is a cost matrix with C; ; = ¢(x},x}) = ||x; — x}||?
e Solving the OT problem with network simplex is O(n®log(n)) for n = ns = n,.

e W, (s, ue) is called the Wasserstein distance (EMD for p = 1).

4/16

Discrete Optimal Transport

Distributions Matrix C OT matrix with samples
o, 8o
o, °
° oo go

@ Source s
@ Target u

°, ?\.

Kantorovitch formulation : OT Linear Program
When j1s = 377 a;dx: and pup = Y070 bidye

Wp'(ks,pe) = min > Ti;Ci;

i,J
st. » Tij=a,Vi and Y Tij=0b;,Vj
J i
where C is a cost matrix with C; ; = c(x7, x}) = [|x] — x||?

e Solving the OT problem with network simplex is O(n®log(n)) for n = ns = n,.

o Wy (s, pue) is called the Wasserstein distance (EMD for p = 1).

4/16

Wasserstein distance

Source distribution Divergences (scaled)

[R— W%
—w

— L (V)
— I, (sq. eucl.)

Target distributions

Wasserstein distance

Wg(us,/it) = g[‘n;r(l] ZTi,ijffx;-Hp s.t. ZTi’j = ai,Vi and ZTi’j = bj,Vj
2 7 ; P

In this case we have c(;i7 y)=|x—-yl?
e A.K.A. Earth Mover's Distance (W7) [Rubner et al., 2000].
e Useful between discrete distribution even without overlapping support.
e Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].
o Wasserstein barycenter: [1 = argmin,, >, w; W5 (, j1;)

5/16

Wasserstein distance

L2 Wasserstein Matrix C

AN

Wasserstein distance

WE (ps, pe) = mln ZTJHX —xj|P st ZTM =a;,Vi and ZTM =b;,Vj
In this case we have c(x y)=|x—-yl? l

e A.K.A. Earth Mover’s Distance (W7) [Rubner et al., 2000].

e Useful between discrete distribution even without overlapping support.

e Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].

o Wasserstein barycenter: i = argmin,, >, w; W5 (u, j1;)

5/16

Wasserstein distance

L2 Wasserstein Matrix C

Wasserstein distance

W (s, 1) = min ZTJHX =GP st > Tiy=a,Vi and Y T =b;,Vj
In this case we have c(x y)=|x—-yl? 1

e A.K.A. Earth Mover’s Distance (W7) [Rubner et al., 2000].

e Useful between discrete distribution even without overlapping support.

e Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].

o Wasserstein barycenter: i = argmin,, >, w; W5 (u, j1;)

5/16

QOutline

Optimal Transport for Machine Learning and Data Science
OT for images processing and graphics
OT for Domain Adaptation
OT between graphs

5/16

VEAR;

sEVENT

Distributions are everywhere in machine learning

e Images, vision, graphics, Time series, text, genes, proteins.

e Many datum and datasets can be seen as distributions.

e Optimal transport provides tools for comparing them with a meaningful geometry.
How to use OT for ML?

e As a loss to compare distributions (Wasserstein distance).

e To learn a mapping between distributions (OT mapping).

e To learn on non-standard data (structured data, graphs).

lllustration from the slides of Gabriel Peyré.

6/16

Distributions are everywhere in machine learning

e Images, vision, graphics, Time series, text, genes, proteins.
e Many datum and datasets can be seen as distributions.

e Optimal transport provides tools for comparing them with a meaningful geometry.

How to use OT for ML?
e As a loss to compare distributions (Wasserstein distance).
e To learn a mapping between distributions (OT mapping).
e To learn on non-standard data (structured data, graphs).

lllustration from the slides of Gabriel Peyré.

6/16

OT for images processing and graphics

Distribution 1 Distribution 1 adapted Distribution 2
Image 1 Image 1 adapted Image 2

Applications of OT for images processing and graphics
e Transporting pixels for color transfer [Ferradans et al., 2014].
e Transporting image patches for style transfer [Mroueh, 2019].
e Shape interpolation with OT barycenters [Solomon et al., 2015].

7/16

OT for images processing and graphics

Applications of OT for images processing and graphics
e Transporting pixels for color transfer [Ferradans et al., 2014].
e Transporting image patches for style transfer [Mroueh, 2019].
e Shape interpolation with OT barycenters [Solomon et al., 2015].

7/16

OT for images processing and graphics

Applications of OT for images processing and graphics
e Transporting pixels for color transfer [Ferradans et al., 2014].
e Transporting image patches for style transfer [Mroueh, 2019].
e Shape interpolation with OT barycenters [Solomon et al., 2015].

7/16

Optimal Transport for Domain Adaptation

Dataset Optimal transport Classification on transported samples

++ Class 1
OO Class 2

Samples X Samples T, (x})

Samples x!

Samples x!

/== Classifier onx; — Classifier on T, (x)

Transport the data [Courty et al., 2016]
1. Estimate optimal transport between distributions.
2. Transport the training samples on target domain.
3. Learn a classifier on the transported training samples.

Can also be used to compensate for biased datasets [Gordaliza et al., 2019]

Transport the labels
e Label Propagation using OT matrix [Solomon et al., 2014, Redko et al., 2019].
e Optimize the target classifier [Courty et al., 2017, Damodaran et al., 2018].

e Change in proportion of classes [Redko et al., 2019, Rakotomamonjy et al., 2020].
8/16

OT between graphs

A

1) <%

N——
Source Targets

Gromov-Wasserstein OT distance [Memoli, 2011]

e OT plan is alignements between nodes of two graphs.

e Minimize changes in pairwise relationships between nodes (preserve structure).
e OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].
e Applications on:

o Brain MRI alignment [Thual et al., 2022]
o Single cell data [Demetci et al., 2022, Tran et al., 2023]

e Barycenter (denoising or compression) of graphs [Vayer et al., 2018].

9/16

OT between graphs

Training (cross-validated grid-search) Test Baseline correlation Aligned correlation
— -———— S i S
P | ; Ipl n 1 g¥: 3 l:
3 1 [I I 1 o |
f: R 7 TR S | (22
1 y h & 1
| < o I &
e = e e - —— F] 1 T e - -1
» 300+ 301{“39 Target Source contrast k Source contrast k Actual
training contrasts subject S subject t mapped on target mesh target contrast k

Gromov-Wasserstein OT distance [Memoli, 2011]

e OT plan is alignements between nodes of two graphs.

e Minimize changes in pairwise relationships between nodes (preserve structure).
e OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].
e Applications on:

o Brain MRI alignment [Thual et al., 2022]
o Single cell data [Demetci et al., 2022, Tran et al., 2023]

Barycenter (denoising or compression) of graphs [Vayer et al., 2018].

9/16

OT between graphs
cellin P P oo Domain #2 1Chlomalma<(ess\b|lny)
2 by

Cell #1
Cell 42
Cellxa
(eIHM
Cell #m

z
pax pex s
A Genome coordinates < Cell #1
@ Gene expression X 3
For each domain, KNN graphs are constructed and S| cons2
Population inra-domain distance matrices are created s _—>
9 Cell #3
of cells ~\ cetlsr _/\ o 2
o
[A 003 —> R
[T SANE ::5 ° g | ceien
Genome coordinates 8 domain alignment via
Chromatin accessibility Probabilistic coupling matrix (1) barycentric projection
from Gromov-Wasserstein transport XU nrx@

Gromov-Wasserstein OT distance [Memoli, 2011]

e OT plan is alignements between nodes of two graphs.

e Minimize changes in pairwise relationships between nodes (preserve structure).

e OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].

e Applications on:
o Brain MRI alignment [Thual et al., 2022]
o Single cell data [Demetci et al., 2022, Tran et al., 2023]
e Barycenter (denoising or compression) of graphs [Vayer et al., 2018].

9/16

OT between graphs

Noiseless graph Noisy graphs samples Barycenter

Gromov-Wasserstein OT distance [Memoli, 2011]
e OT plan is alignements between nodes of two graphs.
e Minimize changes in pairwise relationships between nodes (preserve structure).

e OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].

Applications on:

o Brain MRI alignment [Thual et al., 2022]
o Single cell data [Demetci et al., 2022, Tran et al., 2023]

Barycenter (denoising or compression) of graphs [Vayer et al., 2018].

9/16

QOutline

Hands-on Examples with the POT Library
POT: Python Optimal Transport
Examples with POT
Advanced features of POT

9/16

Python Optimal Transport (POT)

800 "L 3O0CDLS
o e s o TEHOOLOALHR®S
o S O %% T oe | DZaRE 560D
o—=e © ° P4 RPDLO. O e
oe o e oe 8nd 0Hiz:400
oe o-e oe &G 0wl
The toolbox

Website/documentation: https://pythonot.github.io/

Github: https://github.com/Python0T/POT

Activity: 79 contributors, 2.6k stars, 5.5 M PyPI downloads, 1300 citations.
Features: OT solvers from 81 papers, 58 examples in gallery.

CI-CD: 97% test coverage, 100% PEP8 compliant with pre-commit.
Maintained since 2017: 2 releases/year, 1.5k commits.

Packages in PyPl (POT), Conda forge, Debian, Ubuntu.

10/16

https://pythonot.github.io/
https://github.com/PythonOT/POT

How to solve OT in Python?

Distributions Matrix C OT matrix y

oo L XS
o [
® o go
@ Source s
: @ Target u;
... ‘

° “‘.

Solving discrete OT with POT

1 import ot # wmport POT

2
3 # Xs and Xt are positions of source and target samples

4 C = ot.dist(Xs, Xt, metric = 'euclidean') # ground cost matriz
5 result = ot.solve(C, a=a, b=b) # returns an OTResult object
6
7
8

T = result.plan # get the OT plan
cost = result.value # get the 0T cost

Gallery : https://pythonot.github.io/auto_examples/plot_0T_2D_samples.html 11/16

https://pythonot.github.io/auto_examples/plot_OT_2D_samples.html

How to solve OT in Python?

Distributions Matrix C OT matrix y

oo L XS
o [
® o go
@ Source s
: @ Target u;
... ‘

° “‘.

Solving empirical discrete OT with POT

1 import ot # wmport POT

2
3 # Xs and Xt are positions of source and target samples
4 # default wvalues uniform weights for a,bd

5 result = ot.solve_sample(Xs, Xt, metric='euclidean')

6

-

8

T = result.plan # get the OT plan
cost = result.value # get the 0T cost

Gallery : https://pythonot.github.io/auto_examples/plot_0T_2D_samples.html 11/16

https://pythonot.github.io/auto_examples/plot_OT_2D_samples.html

How to solve OT in Python?

Solving regularized discrete OT with POT (sinkhorn)

Distributions

Reg. OT matrix with A=1e-3

]
|]
o 8o N
b ::" *%. " .I
@® Source g .. u .
: ® Target u¢ n

e " j

LIS tk. - :. |
H BN |

Reg. OT matrix with A=1e-2

7

8

import ot # import POT

Xs and Xt are positions of source and target samples

reg 1s entropic regularization strength

result = ot.solve_sample(Xs, Xt, reg=0.1, metric='euclidean')

T = result.plan # get the OT plan

cost = result.value

get the OT cost

Gallery : https://pythonot.github.io/auto_examples/plot_0T_2D_samples.html

11/16

https://pythonot.github.io/auto_examples/plot_OT_2D_samples.html

OT barycenter between empirical distributions

Data measures and their barycenter

30 4

25

20 A

15 4

10 4

54

= 2-Wasserstein barycenter

0

T
0 20 40 60 80 100

Wasserstein (free support) barycenter with POT

1 from ot.lp import free_support_barycenter

2

3 X_list = [X1, X2] # list of locations of the measures

4 a_list = [al, a2] # list of weights of the measures

5 w = [0.5, 0.5] # barycenter weights

6 X_init = np.random.randn(k, d) # initial barycenter locations
7 Xbary = free_support_barycenter(X_list, a_list, X_init,

— weights=w)

Gallery : Free support barycenter example 12/16

https://pythonot.github.io/auto_examples/barycenters/plot_free_support_barycenter.html

Advanced feature : POT backends

POT Backends

e Automatic detection of type of inputs (Numpy, Pytorch, Tensorflow, Jax, Cupy).

e Coded in functions with the backend : nx = get_backend(C,a,b, ...) .
e Differentiation through the OT solvers (automatic or manual definition).
e Works with CPU and GPU tensors (similar to array-api)

Example in Pytorch

1 import ot
2 import torch

differentiable loss (or OT plan)

Xs = torch.randn((100,2), requires_grad=True).cuda()

Xt = torch.randn((80,2)) .cuda()

loss = ot.solve_sample(Xs, Xt, reg=0.1).value # runs on GPU
loss.backward() # gradients on Xs

© ® N o u A~ W

10 # batched with C_batch a (batch, n, n) tensor of cost matrices
11 loss_batch = ot.solve_batch(C_batch, reg=0.1).value
12 loss_batch.mean() .backward() # grads backprop. through C_batch

13/16

Advanced features : other solvers in POT

Sliced OT (line, sphere, subspace) (Fused) Gromov-Wasserstein OT

)Q..Q
..OC.‘
TecoOO®
\\eeee

Example Gallery: https://pythonot.github.io/auto_examples/index.html 14/16

https://pythonot.github.io/auto_examples/index.html

QOutline

Conclusion and Q&A

14/16

Acknowledgements

POT contributor

@ewo"zoo@ &b
TESOLLS TR
DENE 5GP -
@D, @ es
ené 0@ 28590
&G 0w

Fundings

||||||||||||||||||||||||||
d'intelligence artificielle

Conclusions and Q&A

R Link to slides

Examples gallery

This is a gallery of al the POT example files

OT and regularized OT

Quickstart Guide

Optimal Transport in Python

e POT is a well established library for optimal transport in Python.

e Both basic and more advanced OT solvers from the literature implemented.

e Backends for Numpy/Scipy, Pytorch, Cupy, Tensorflow and Jax.
e Many other examples in the gallery: https://pythonot.github.io/
[]

Other open source libraries: GeomLoss (GPU, wrapper in POT), OTT-JAX.

16/16

https://pythonot.github.io/

OTGame (OT Puzzle game on android)

1
'@ Standard game 1/9 Timer:19s New

https://play.google.com/store/apps/details?id=com.flamary.otgame

17/16

https://play.google.com/store/apps/details?id=com.flamary.otgame

Gromov-Wasserstein and extensions

SEES

|dx (z,2") — dy (y,)

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

(s = i D;,— D) |PTs; T
gWP(/L:Ut) TEI'?(I:.?,m,) Jzkl| i,k J,l| i, Lkl

with ps =37, aidx; and p = 37, b;0, : and D; i, = ||x — %3, D}, = [|Ix5 — x|
e Distance between metric measured spaces : across different spaces.

e Search for an OT plan that preserve the pairwise relationships between samples.
e Entropy regularized GW proposed in [Peyré et al., 2016].
e Fused GW interpolates between Wass. and GW [Vayer et al., 2018].

18/16

Gromov-Wasserstein and extensions

Q bj

FGW for discrete distributions [Vayer et al., 2018]

FOWP (e, 1) = Terlﬁlir}m S (A= a)C + ol Dk — Dy |*) Ty Te
= i,5,k,1

H — . . X . _ s s o t t
with j1o = 3, a:6: and e = 36,60 and Dy =[x — xill, Dy =[x = x|
e Distance between metric measured spaces : across different spaces.

e Search for an OT plan that preserve the pairwise relationships between samples.
e Entropy regularized GW proposed in [Peyré et al., 2016].
e Fused GW interpolates between Wass. and GW [Vayer et al., 2018].

18/16

References |

[Courty et al., 2016] Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2016).
Optimal transport for domain adaptation.
Pattern Analysis and Machine Intelligence, IEEE Transactions on.

[Courty et al., 2017] Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2017).
Optimal transport for domain adaptation.
IEEETPAMI, 39(9):1853-1865.

[Cuturi, 2013] Cuturi, M. (2013).
Sinkhorn distances: Lightspeed computation of optimal transport.
In NIPS, pages 2292-2300.

[Damodaran et al., 2018] Damodaran, B. B., Kellenberger, B., Flamary, R., Tuia, D., and
Courty, N. (2018).

Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation.

[Demetci et al., 2022] Demetci, P., Santorella, R., Chakravarthy, M., Sandstede, B., and
Singh, R. (2022).
Scotv2: Single-cell multiomic alignment with disproportionate cell-type representation.
Journal of Computational Biology, 29(11):1213-1228.

19/16

References |l

[Ferradans et al., 2014] Ferradans, S., Papadakis, N., Peyré, G., and Aujol, J.-F. (2014).
Regularized discrete optimal transport.
SIAM Journal on Imaging Sciences, 7(3):1853-1882.

[Gordaliza et al., 2019] Gordaliza, P., Del Barrio, E., Fabrice, G., and Loubes, J.-M. (2019).
Obtaining fairness using optimal transport theory.
In International Conference on Machine Learning, pages 2357-2365. PMLR.

[Kantorovich, 1942] Kantorovich, L. (1942).
On the translocation of masses.
C.R. (Doklady) Acad. Sci. URSS (N.S.), 37:199-201.

[Memoli, 2011] Memoli, F. (2011).
Gromov wasserstein distances and the metric approach to object matching.

Foundations of Computational Mathematics, pages 1-71.

[Monge, 1781] Monge, G. (1781).
Mémoire sur la théorie des déblais et des remblais.

De I'lmprimerie Royale.

20/16

References Il

[Mroueh, 2019] Mroueh, Y. (2019).
Wasserstein style transfer.
arXiv preprint arXiv:1905.12828.

[Peyré et al., 2016] Peyré, G., Cuturi, M., and Solomon, J. (2016).
Gromov-wasserstein averaging of kernel and distance matrices.
In ICML, pages 2664-2672.

[Rakotomamonjy et al., 2020] Rakotomamonjy, A., Flamary, R., Gasso, G., Alaya, M., Berar,
M., and Courty, N. (2020).

Match and reweight strategy for generalized target shift.

[Redko et al., 2019] Redko, I., Courty, N., Flamary, R., and Tuia, D. (2019).
Optimal transport for multi-source domain adaptation under target shift.
In International Conference on Artificial Intelligence and Statistics (AISTAT).

[Rubner et al., 2000] Rubner, Y., Tomasi, C., and Guibas, L. J. (2000).
The earth mover's distance as a metric for image retrieval.

International journal of computer vision, 40(2):99-121.

21/16

References 1V

[Solomon et al., 2015] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A.,
Nguyen, A., Du, T., and Guibas, L. (2015).

Convolutional wasserstein distances: Efficient optimal transportation on geometric domains.

ACM Transactions on Graphics (TOG), 34(4):66.

[Solomon et al., 2016] Solomon, J., Peyré, G., Kim, V. G., and Sra, S. (2016).
Entropic metric alignment for correspondence problems.
ACM Transactions on Graphics (TOG), 35(4):72.

[Solomon et al., 2014] Solomon, J., Rustamov, R., Guibas, L., and Butscher, A. (2014).
Wasserstein propagation for semi-supervised learning.

In International Conference on Machine Learning, pages 306-314. PMLR.

[Thual et al., 2022] Thual, A., Tran, H., Zemskova, T., Courty, N., Flamary, R., Dehaene, S.,
and Thirion, B. (2022).

Aligning individual brains with fused unbalanced gromov-wasserstein.

In Neural Information Processing Systems (NeurlPS).

22/16

References V

[Tran et al., 2023] Tran, Q. H., Janati, H., Courty, N., Flamary, R., Redko, I., Demetci, P.,
and Singh, R. (2023).

Unbalanced co-optimal transport.
In Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI).

[Vayer et al., 2018] Vayer, T., Chapel, L., Flamary, R., Tavenard, R., and Courty, N. (2018).

Fused gromov-wasserstein distance for structured objects: theoretical foundations and
mathematical properties.

23/16

	Introduction to Optimal Transport
	Optimal Transport problem and formulations
	Wasserstein distance and geometry of OT

	Optimal Transport for Machine Learning and Data Science
	OT for images processing and graphics
	OT for Domain Adaptation
	OT between graphs

	Hands-on Examples with the POT Library
	POT: Python Optimal Transport
	Examples with POT
	Advanced features of POT

	Conclusion and Q&A

