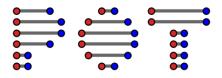
Optimal Transport in Python: A Practical Introduction with POT



Rémi Flamary, École polytechnique

October 30, 2025

PyData Paris 2025, Cité des Sciences et de l'Industrie, France

Table of content

Introduction to Optimal Transport

Optimal Transport problem and formulations Wasserstein distance and geometry of OT

Optimal Transport for Machine Learning and Data Science

OT for images processing and graphics

OT for Domain Adaptation

OT between graphs

Hands-on Examples with the POT Library

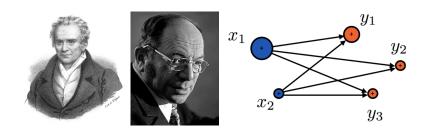
POT: Python Optimal Transport

Examples with POT

Advanced features of POT

Conclusion and Q&A

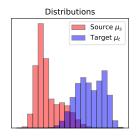
Optimal transport

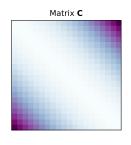


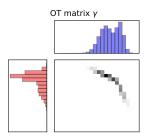
Principle: Move mass in the most efficient way

- Problem introduced by Gaspard Monge in his memoire [Monge, 1781].
- Monge formulation seeks for a mapping between two mass distribution.
- Reformulated by Leonid Kantorovich to allow splitting [Kantorovich, 1942].
- Applications originally for resource allocation problems

Discrete Optimal Transport







Kantorovitch formulation : OT Linear Program

When
$$\mu_s = \sum_{i=1}^{n_s} a_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$

$$W^p(\mu, \mu_s) = \min_{i=1}^{n_t} \sum_{i=1}^{n_t} T_{i,i} C_{i,i}$$

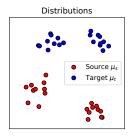
$$W_p^p(\mu_s, \mu_t) = \min_{T \geq 0} \sum_{i,j} T_{i,j} C_{i,j}$$

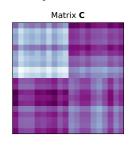
s.t.
$$\sum_{j} T_{i,j} = \mathbf{a_i}, \forall i$$
 and $\sum_{i} T_{i,j} = b_j, \forall j$

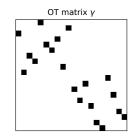
where C is a cost matrix with $C_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t) = \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^p$

- Solving the OT problem with network simplex is $O(n^3 \log(n))$ for $n = n_s = n_t$.
- $W_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p = 1).

Discrete Optimal Transport







Kantorovitch formulation: OT Linear Program

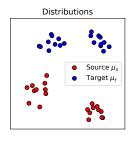
When
$$\mu_s = \sum_{i=1}^{n_s} \mathbf{a}_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$
$$W_p^p(\mu_s, \mu_t) = \min_{T \geq 0} \sum_{i,j} T_{i,j} C_{i,j}$$
 s.t. $\sum_i T_{i,j} = \mathbf{a}_i, \forall i$ and $\sum_i T_{i,j} = b_j, \forall j$

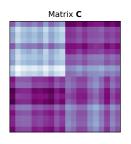
$$\sum_{i} T_{i,j} = \mathbf{b}_{j}, \forall j$$

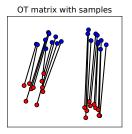
where C is a cost matrix with $C_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t) = \|\mathbf{x}_i^s - \mathbf{x}_i^t\|^p$

- Solving the OT problem with network simplex is $O(n^3 \log(n))$ for $n = n_s = n_t$.
- $W_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p=1).

Discrete Optimal Transport







Kantorovitch formulation: OT Linear Program

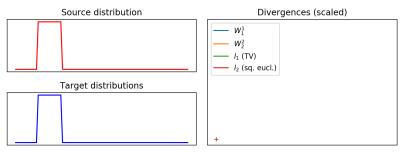
When
$$\mu_s = \sum_{i=1}^{n_s} \mathbf{a}_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$
$$W_p^p(\mu_s, \mu_t) = \min_{T \geq 0} \sum_{i,j} T_{i,j} C_{i,j}$$
 s.t. $\sum_i T_{i,j} = \mathbf{a}_i, \forall i$ and $\sum_i T_{i,j} = b_j, \forall j$

$$\sum_{i} T_{i,j} = \mathbf{b}_{j}, \forall j$$

where C is a cost matrix with $C_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_i^t) = ||\mathbf{x}_i^s - \mathbf{x}_i^t||^p$

- Solving the OT problem with network simplex is $O(n^3 \log(n))$ for $n = n_s = n_t$.
- $W_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p=1).

Wasserstein distance

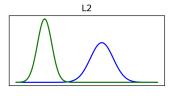


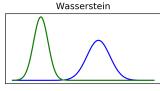
Wasserstein distance

$$W_p^p(\boldsymbol{\mu}_s,\boldsymbol{\mu}_t) = \min_{\boldsymbol{T} \geq \boldsymbol{0}} \quad \sum_{i,j} T_{i,j} \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^p \quad \text{s.t.} \quad \sum_j T_{i,j} = \underline{a_i}, \forall i \quad \text{and} \quad \sum_i T_{i,j} = \underline{b_j}, \forall j \in \mathcal{I}$$

- In this case we have $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|^p$
 - A.K.A. Earth Mover's Distance (W_1^1) [Rubner et al., 2000].
 - Useful between discrete distribution even without overlapping support.
 - Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].
 - Wasserstein barycenter: $\overline{\mu} = \arg\min_{\mu} \sum_{i} w_{i} W_{2}^{2}(\mu, \mu_{i})$

Wasserstein distance





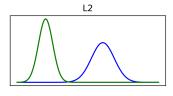
Wasserstein distance

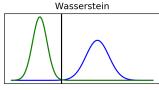
$$W_p^p(\boldsymbol{\mu_s},\boldsymbol{\mu_t}) = \min_{\boldsymbol{T} \geq \boldsymbol{0}} \quad \sum_{i,j} T_{i,j} \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^p \quad \text{s.t.} \quad \sum_j T_{i,j} = \underline{a_i}, \forall i \quad \text{and} \quad \sum_i T_{i,j} = b_j, \forall j$$

In this case we have $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^p$

- A.K.A. Earth Mover's Distance (W_1^1) [Rubner et al., 2000].
- Useful between discrete distribution even without overlapping support.
- Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].
- Wasserstein barycenter: $\overline{\mu} = \arg\min_{\mu} \sum_{i} w_i W_2^2(\mu, \mu_i)$

Wasserstein distance





Wasserstein distance

$$W_p^p(\boldsymbol{\mu_s},\boldsymbol{\mu_t}) = \min_{T \geq \mathbf{0}} \quad \sum_{i,j} T_{i,j} \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^p \quad \text{s.t.} \quad \sum_j T_{i,j} = \underline{a_i}, \forall i \quad \text{and} \quad \sum_i T_{i,j} = b_j, \forall j$$

In this case we have $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^p$

- A.K.A. Earth Mover's Distance (W_1^1) [Rubner et al., 2000].
- Useful between discrete distribution even without overlapping support.
- Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].
- Wasserstein barycenter: $\overline{\mu} = \arg\min_{\mu} \sum_{i} w_i W_2^2(\mu, \mu_i)$

Outline

Introduction to Optimal Transport

Optimal Transport problem and formulation: Wasserstein distance and geometry of OT

Optimal Transport for Machine Learning and Data Science

OT for images processing and graphics

OT for Domain Adaptation

OT between graphs

Hands-on Examples with the POT Library

POT: Python Optimal Transport

Examples with POT

Advanced features of POT

Conclusion and Q&A

OT for Machine Learning and Data Science

Distributions are everywhere in machine learning

- Images, vision, graphics, Time series, text, genes, proteins.
- Many datum and datasets can be seen as distributions.
- Optimal transport provides tools for comparing them with a meaningful geometry.

How to use OT for ML?

- As a loss to compare distributions (Wasserstein distance).
- To learn a mapping between distributions (OT mapping).
- To learn on non-standard data (structured data, graphs).

OT for Machine Learning and Data Science

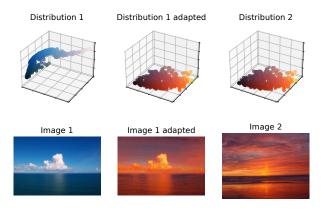
Distributions are everywhere in machine learning

- Images, vision, graphics, Time series, text, genes, proteins.
- Many datum and datasets can be seen as distributions.
- Optimal transport provides tools for comparing them with a meaningful geometry.

How to use OT for ML?

- As a loss to compare distributions (Wasserstein distance).
- To learn a mapping between distributions (OT mapping).
- To learn on non-standard data (structured data, graphs).

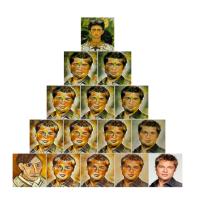
OT for images processing and graphics



Applications of OT for images processing and graphics

- Transporting pixels for color transfer [Ferradans et al., 2014].
- Transporting image patches for style transfer [Mroueh, 2019].
- Shape interpolation with OT barycenters [Solomon et al., 2015].

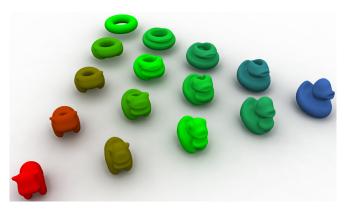
OT for images processing and graphics



Applications of OT for images processing and graphics

- Transporting pixels for color transfer [Ferradans et al., 2014].
- Transporting image patches for style transfer [Mroueh, 2019].
- Shape interpolation with OT barycenters [Solomon et al., 2015].

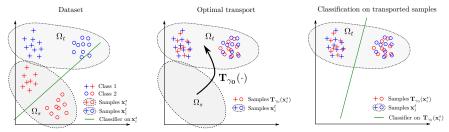
OT for images processing and graphics



Applications of OT for images processing and graphics

- Transporting pixels for color transfer [Ferradans et al., 2014].
- Transporting image patches for style transfer [Mroueh, 2019].
- Shape interpolation with OT barycenters [Solomon et al., 2015].

Optimal Transport for Domain Adaptation



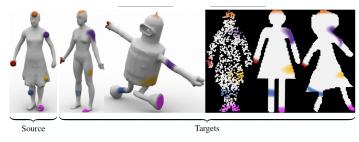
Transport the data [Courty et al., 2016]

- 1. Estimate optimal transport between distributions.
- 2. Transport the training samples on target domain.
- 3. Learn a classifier on the transported training samples.

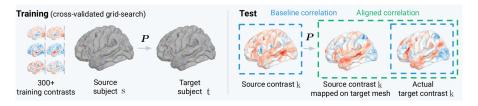
Can also be used to compensate for biased datasets [Gordaliza et al., 2019]

Transport the labels

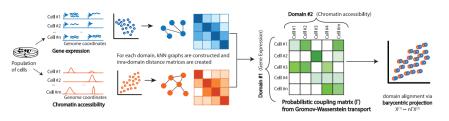
- Label Propagation using OT matrix [Solomon et al., 2014, Redko et al., 2019].
- Optimize the target classifier [Courty et al., 2017, Damodaran et al., 2018].
- Change in proportion of classes [Redko et al., 2019, Rakotomamonjy et al., 2020].



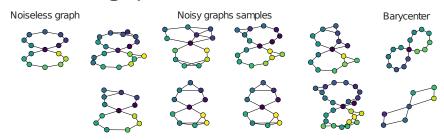
- OT plan is alignements between nodes of two graphs.
- Minimize changes in pairwise relationships between nodes (preserve structure).
- OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].
- Applications on:
 - o Brain MRI alignment [Thual et al., 2022]
 - o Single cell data [Demetci et al., 2022, Tran et al., 2023]
- Barycenter (denoising or compression) of graphs [Vayer et al., 2018].



- OT plan is alignements between nodes of two graphs.
- Minimize changes in pairwise relationships between nodes (preserve structure).
- OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].
- Applications on:
 - o Brain MRI alignment [Thual et al., 2022]
 - o Single cell data [Demetci et al., 2022, Tran et al., 2023]
- Barycenter (denoising or compression) of graphs [Vayer et al., 2018].



- OT plan is alignements between nodes of two graphs.
- Minimize changes in pairwise relationships between nodes (preserve structure).
- OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].
- Applications on:
 - o Brain MRI alignment [Thual et al., 2022]
 - o Single cell data [Demetci et al., 2022, Tran et al., 2023]
- Barycenter (denoising or compression) of graphs [Vayer et al., 2018].



- OT plan is alignements between nodes of two graphs.
- Minimize changes in pairwise relationships between nodes (preserve structure).
- OT between surfaces, shapes, graphs [Solomon et al., 2016, Vayer et al., 2018].
- Applications on:
 - o Brain MRI alignment [Thual et al., 2022]
 - o Single cell data [Demetci et al., 2022, Tran et al., 2023]
- Barycenter (denoising or compression) of graphs [Vayer et al., 2018].

Outline

Introduction to Optimal Transport

Optimal Transport problem and formulations Wasserstein distance and geometry of OT

Optimal Transport for Machine Learning and Data Science

OT for images processing and graphics

OT for Domain Adaptation

OT between graphs

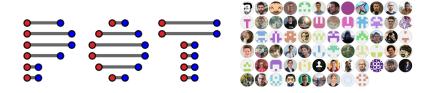
Hands-on Examples with the POT Library

POT: Python Optimal Transport Examples with POT

Advanced features of POT

Conclusion and Q&A

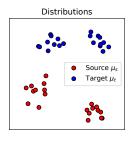
Python Optimal Transport (POT)

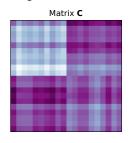


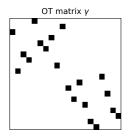
The toolbox

- Website/documentation: https://pythonot.github.io/
- Github: https://github.com/PythonOT/POT
- Activity: 79 contributors, 2.6k stars, 5.5 M PyPI downloads, 1300 citations.
- Features: OT solvers from 81 papers, 58 examples in gallery.
- CI-CD: 97% test coverage, 100% PEP8 compliant with pre-commit.
- Maintained since 2017: 2 releases/year, 1.5k commits.
- Packages in PyPI (POT), Conda forge, Debian, Ubuntu.

How to solve OT in Python?







Solving discrete OT with POT

```
import ot # import POT

a # Xs and Xt are positions of source and target samples

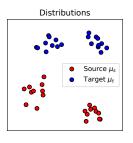
c = ot.dist(Xs, Xt, metric = 'euclidean') # ground cost matrix

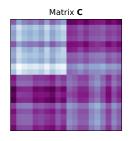
result = ot.solve(C, a=a, b=b) # returns an OTResult object

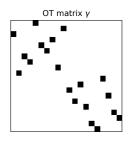
T = result.plan # get the OT plan

cost = result.value # get the OT cost
```

How to solve OT in Python?







Solving empirical discrete OT with POT

```
import ot # import POT

a # Xs and Xt are positions of source and target samples

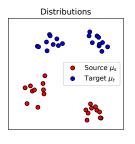
# default values uniform weights for a,b

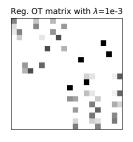
result = ot.solve_sample(Xs, Xt, metric='euclidean')

T = result.plan # get the OT plan

cost = result.value # get the OT cost
```

How to solve OT in Python?





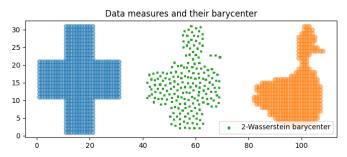


Solving regularized discrete OT with POT (sinkhorn)

```
import ot # import POT

i
```

OT barycenter between empirical distributions



Wasserstein (free support) barycenter with POT

```
from ot.lp import free_support_barycenter

X_list = [X1, X2] # list of locations of the measures
a_list = [a1, a2] # list of weights of the measures
w = [0.5, 0.5] # barycenter weights
X_init = np.random.randn(k, d) # initial barycenter locations
Xbary = free_support_barycenter(X_list, a_list, X_init,
weights=w)
```

Advanced feature: POT backends

POT Backends

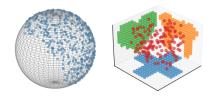
- Automatic detection of type of inputs (Numpy, Pytorch, Tensorflow, Jax, Cupy).
- Coded in functions with the backend: nx = get_backend(C,a,b, ...)
- Differentiation through the OT solvers (automatic or manual definition).
- Works with CPU and GPU tensors (similar to array-api)

Example in Pytorch

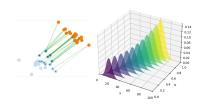
```
import ot
  import torch
   # differentiable loss (or OT plan)
  Xs = torch.randn((100,2), requires_grad=True).cuda()
  Xt = torch.randn((80,2)).cuda()
  loss = ot.solve_sample(Xs, Xt, reg=0.1).value # runs on GPU
   loss.backward() # gradients on Xs
   # batched with C_batch a (batch, n, n) tensor of cost matrices
10
   loss_batch = ot.solve_batch(C_batch, reg=0.1).value
11
  loss_batch.mean().backward() # grads backprop. through C_batch
```

Advanced features: other solvers in POT

Sliced OT (line, sphere, subspace)

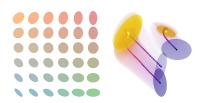


Unbalanced and partial OT



(Fused) Gromov-Wasserstein OT

OT on Gaussian and Gaussian mixtures



Outline

Introduction to Optimal Transport

Optimal Transport problem and formulation Wasserstein distance and geometry of OT

Optimal Transport for Machine Learning and Data Science

OT for images processing and graphics

OT for Domain Adaptation

OT between graphs

Hands-on Examples with the POT Library

POT: Python Optimal Transport

Examples with POT

Advanced features of POT

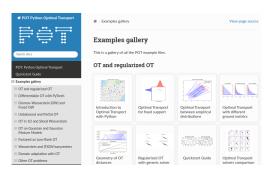
Conclusion and Q&A

Acknowledgements

POT contributors

Fundings

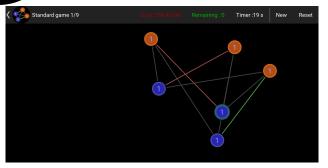
Conclusions and Q&A



Optimal Transport in Python

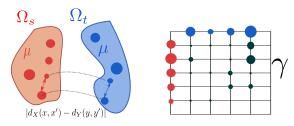
- POT is a well established library for optimal transport in Python.
- Both basic and more advanced OT solvers from the literature implemented.
- Backends for Numpy/Scipy, Pytorch, Cupy, Tensorflow and Jax.
- Many other examples in the gallery: https://pythonot.github.io/
- Other open source libraries: GeomLoss (GPU, wrapper in POT), OTT-JAX.

OTGame (OT Puzzle game on android)



https://play.google.com/store/apps/details?id=com.flamary.otgame

Gromov-Wasserstein and extensions



Inspired from Gabriel Peyré

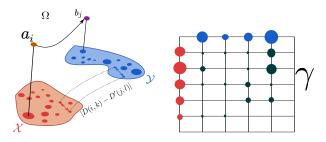
GW for discrete distributions [Memoli, 2011]

$$\mathcal{GW}_{p}^{p}(\mu_{s}, \mu_{t}) = \min_{T \in \Pi(\mu_{s}, \mu_{t})} \sum_{i, j, k, l} | \frac{D_{i,k}}{D_{i,k}} - \frac{D'_{j,l}}{p} |^{p} T_{i,j} T_{k,l}$$

with $\underline{\mu_s} = \sum_i \underline{a_i} \delta_{\mathbf{x}_i^s}$ and $\underline{\mu_t} = \sum_j b_j \delta_{x_{j,i}^t}$ and $\underline{D_{i,k}} = \|\mathbf{x}_i^s - \mathbf{x}_k^s\|, D_{j,l}' = \|\mathbf{x}_j^t - \mathbf{x}_l^t\|$

- Distance between metric measured spaces: across different spaces.
 - Search for an OT plan that preserve the pairwise relationships between samples.
 - Entropy regularized GW proposed in [Peyré et al., 2016].
 - Fused GW interpolates between Wass. and GW [Vayer et al., 2018].

Gromov-Wasserstein and extensions



FGW for discrete distributions [Vayer et al., 2018]

$$\mathcal{FGW}_{p}^{p}(\mu_{s}, \mu_{t}) = \min_{T \in \Pi(\mu_{s}, \mu_{t})} \sum_{i, j, k, l} \left((1 - \alpha) C_{i, j}^{q} + \alpha | \mathbf{D}_{i, k} - \mathbf{D}_{j, l}' |^{q} \right)^{p} T_{i, j} T_{k, l}$$

with $\mu_s = \sum_i a_i \delta_{\mathbf{x}_i^s}$ and $\mu_t = \sum_j b_j \delta_{x_j^t}$ and $D_{i,k} = \|\mathbf{x}_i^s - \mathbf{x}_k^s\|, D'_{j,l} = \|\mathbf{x}_j^t - \mathbf{x}_l^t\|$

- Distance between metric measured spaces : across different spaces.
- Search for an OT plan that preserve the pairwise relationships between samples.
- Entropy regularized GW proposed in [Peyré et al., 2016].
- Fused GW interpolates between Wass. and GW [Vayer et al., 2018].

References I

[Courty et al., 2016] Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2016). Optimal transport for domain adaptation.

Pattern Analysis and Machine Intelligence, IEEE Transactions on.

[Courty et al., 2017] Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2017). Optimal transport for domain adaptation.

IEEETPAMI, 39(9):1853–1865.

[Cuturi, 2013] Cuturi, M. (2013).

Sinkhorn distances: Lightspeed computation of optimal transport.

In NIPS, pages 2292-2300.

[Damodaran et al., 2018] Damodaran, B. B., Kellenberger, B., Flamary, R., Tuia, D., and Courty, N. (2018).

Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation.

[Demetci et al., 2022] Demetci, P., Santorella, R., Chakravarthy, M., Sandstede, B., and Singh, R. (2022).

Scotv2: Single-cell multiomic alignment with disproportionate cell-type representation. *Journal of Computational Biology*, 29(11):1213–1228.

References II

[Ferradans et al., 2014] Ferradans, S., Papadakis, N., Peyré, G., and Aujol, J.-F. (2014). Regularized discrete optimal transport.

SIAM Journal on Imaging Sciences, 7(3):1853-1882.

[Gordaliza et al., 2019] Gordaliza, P., Del Barrio, E., Fabrice, G., and Loubes, J.-M. (2019). Obtaining fairness using optimal transport theory.

In International Conference on Machine Learning, pages 2357-2365. PMLR.

[Kantorovich, 1942] Kantorovich, L. (1942).

On the translocation of masses.

C.R. (Doklady) Acad. Sci. URSS (N.S.), 37:199–201.

[Memoli, 2011] Memoli, F. (2011).

Gromov wasserstein distances and the metric approach to object matching.

Foundations of Computational Mathematics, pages 1–71.

[Monge, 1781] Monge, G. (1781).

Mémoire sur la théorie des déblais et des remblais.

De l'Imprimerie Royale.

References III

[Mroueh, 2019] Mroueh, Y. (2019).
Wasserstein style transfer.
arXiv preprint arXiv:1905.12828.

In ICML, pages 2664-2672.

```
[Rakotomamonjy et al., 2020] Rakotomamonjy, A., Flamary, R., Gasso, G., Alaya, M., Berar, M., and Courty, N. (2020).
Match and reweight strategy for generalized target shift.
[Redko et al., 2019] Redko, I., Courty, N., Flamary, R., and Tuia, D. (2019).
Optimal transport for multi-source domain adaptation under target shift.
In International Conference on Artificial Intelligence and Statistics (AISTAT).
[Rubner et al., 2000] Rubner, Y., Tomasi, C., and Guibas, L. J. (2000).
The earth mover's distance as a metric for image retrieval.
International journal of computer vision, 40(2):99–121.
```

[Peyré et al., 2016] Peyré, G., Cuturi, M., and Solomon, J. (2016).
Gromov-wasserstein averaging of kernel and distance matrices.

References IV

[Solomon et al., 2015] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A., Du, T., and Guibas, L. (2015).

Convolutional wasserstein distances: Efficient optimal transportation on geometric domains.

ACM Transactions on Graphics (TOG), 34(4):66.

[Solomon et al., 2016] Solomon, J., Peyré, G., Kim, V. G., and Sra, S. (2016).

Entropic metric alignment for correspondence problems.

ACM Transactions on Graphics (TOG), 35(4):72.

[Solomon et al., 2014] Solomon, J., Rustamov, R., Guibas, L., and Butscher, A. (2014).

Wasserstein propagation for semi-supervised learning.

In International Conference on Machine Learning, pages 306-314. PMLR.

[Thual et al., 2022] Thual, A., Tran, H., Zemskova, T., Courty, N., Flamary, R., Dehaene, S., and Thirion, B. (2022).

Aligning individual brains with fused unbalanced gromov-wasserstein.

In Neural Information Processing Systems (NeurIPS).

References V

[Tran et al., 2023] Tran, Q. H., Janati, H., Courty, N., Flamary, R., Redko, I., Demetci, P., and Singh, R. (2023).

Unbalanced co-optimal transport.

In Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI).

 $[Vayer\ et\ al.,\ 2018]\ Vayer,\ T.,\ Chapel,\ L.,\ Flamary,\ R.,\ Tavenard,\ R.,\ and\ Courty,\ N.\ (2018).$

Fused gromov-wasserstein distance for structured objects: theoretical foundations and mathematical properties.