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Objective: Solve unsupervised domain adaptation (DA) problems by aligning Joint Distributions as a discrete Optimal Transport (JDOT) problem.

OT AND DA

Dataset Classification on transported samples

Optimal transport
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In a previous work [CFTR16|, OT was used to align one source and
one target domain distributions under the following assumptions:
i) There exist a transport in the feature space T between the two
domains, #2)The transport preserves the conditional distributions

Ps(y|xs) = Pi(y|T(xs))-

A 3-step strategy was then employed to solve for the problem:

1. Estimate optimal transport between distributions.
2. Transport the training samples with barycentric mapping .

3. Learn a classifier on the transported training samples.
Works very well in practice for a large class of transformation but:

e Model transformation only in the feature space
e Requires the same class proportion between domains

e We only search for a classifier f : R? — R, finding the mapping
T as a first step is more complex and unnecessary.

Our solution We propose to transport Joint distributions (mea-
sures in the product space between input and label space)

Notations: Let Q € R? be a compact input measurable space of
dimension d and C the set of labels.

o Let Ps(X,Y) € P(Q2xC)and P(X,Y) € P(Q2 x C) the source
and target joint distribution.

e We have access to an empirical sampling P, = ]\1, Zfi1 Ox3
of the source distribution defined by X = {Xf}i\;l and label

information Y, = {y?};\,.

e yet the target domain is defined through its empirical distribution
in the feature space with samples X, = {x!},\*, without labels.
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PROXY DISTRIBUTION

Let f be a {2 — C function from a given class of hypothesis H. We
define the following joint distribution that uses f as a proxy of y

Pl = (%, £(%))xn,

~ f 1

and its empirical counterpart Py’ = - D i1 Oxt f(xty -

LEARNING WITH JDOT

We propose to learn the predictor f that minimizes :

min
/ ~YEA

e A is the transport polytope.

o D(x7,y5; x5, f(xh)) = af|xf — xt||* + L(y], f(x5)) with o > 0.

e We search for the predictor f that best aligns the joint distribu-
tions.

LLEARNING BOUND

We showcase a generalization bound for the unsupervised DA problem. It is based
on a notion of probabilistic transfer Lipschitzness, which extends the original notion

of Probabilistic Lipschitzness [BDSSU12|.

Probabilistic Transfer Lipschitzness (PTL) Let ps and p: be re-
spectively the source and target distributions. Let ¢ : R — [0, 1]. A labeling func-
tion f :  — R and a joint distribution IT(us, put) over us and ps are ¢-Lipschitz
transferable if for all A > O:

Prisey )Tl ip) 1 (x1) = F(x2)] > Ad(x1,%2)] < $(N).

Theorem Let f* € H be a Lipschitz labeling function that verifies the ¢-PTL
assumption w.r.t. II* and that minimizes the joint error errg(f*) 4+ errr(f*) w.r.t
all PTL functions compatible with II*. For all A > 0, with o« = kA, we have with
probability at least 1 — 0 that:

errr (f) < Wi (Pa, Pl) + /2 10g(2) (LIZVNT) 4 g (£7) 4 errp (£7) + kM(N).
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OPTIMIZATION PROBLEM

1,

min
feEH,yeA
e ()(f) is a regularization for the predictor f

e We propose to use block coordinate descent (BCD)/Gauss Seidel:
solve alternatively for v and f.

e Provably converges to a stationary point of the problem.

REGRESSION WITH JDOT

Toy regression models
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Least square regression with quadratic regularization For a fixed
~ the optimization problem is equivalent to

Toy regression distributions Joint OT matrices Model estimated with JDOT
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where §; = nq Zj Y. ;Y; is a weighted average of the source target values.

CLASSIFICATION WITH JDOT
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Accuracy along BCD iterations
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Multiclass classification with Hinge loss For a fixed ~ the optimization
problem is equivalent to

min
JLEH

> Pk L1, fr(x5)) + (1= Py L(=1, fu(x5) + A D 1 fell?
g,k k

where P is the class proportion matrix P = Nit'yTPS. and P° and Y° are defined from

the source data with One-vs-All strategy

CONCLUSION

e Powerful and versatile method, with applications to learn deep neural net-
works

e State-of-the art on several benchmarks, see paper for numerical results



