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Objective: Solve unsupervised domain adaptation (DA) problems by aligning Joint Distributions as a discrete Optimal Transport (JDOT) problem.
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In a previous work [CFTR16], OT was used to align one source and
one target domain distributions under the following assumptions:
i) There exist a transport in the feature space T between the two
domains, ii)The transport preserves the conditional distributions

Ps(y|xs) = Pt(y|T(xs)).

A 3-step strategy was then employed to solve for the problem:

1. Estimate optimal transport between distributions.

2. Transport the training samples with barycentric mapping .

3. Learn a classifier on the transported training samples.

Works very well in practice for a large class of transformation but:

• Model transformation only in the feature space

• Requires the same class proportion between domains

• We only search for a classifier f : Rd → R, finding the mapping
T as a first step is more complex and unnecessary.

Our solution We propose to transport Joint distributions (mea-
sures in the product space between input and label space)

Notations: Let Ω ∈ Rd be a compact input measurable space of
dimension d and C the set of labels.

• Let Ps(X,Y ) ∈ P(Ω × C) and Pt(X,Y ) ∈ P(Ω × C) the source
and target joint distribution.

• We have access to an empirical sampling P̂s = 1
Ns

∑Ns

i=1 δxs
i ,y

s
i

of the source distribution defined by Xs = {xsi}
Ns
i=1 and label

information Ys = {ysi }
Ns
i=1.

• yet the target domain is defined through its empirical distribution
in the feature space with samples Xt = {xti}

Nt
i=1 without labels.
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Proxy distribution
Let f be a Ω → C function from a given class of hypothesis H. We
define the following joint distribution that uses f as a proxy of y

Pft = (x, f(x))x∼µt

and its empirical counterpart P̂t
f

= 1
Nt

∑Nt

i=1 δxt
i,f(xt

i)
.

learning with JDOT
We propose to learn the predictor f that minimizes :

min
f

W1(P̂s, P̂t
f
) = inf

γ∈∆

∑
ij

D(xsi ,y
s
i ; x

t
j , f(xtj))γij


• ∆ is the transport polytope.

• D(xsi ,y
s
i ; x

t
j , f(xtj)) = α‖xsi − xtj‖2 + L(ysi , f(xtj)) with α > 0.

• We search for the predictor f that best aligns the joint distribu-
tions.

Learning bound
We showcase a generalization bound for the unsupervised DA problem. It is based
on a notion of probabilistic transfer Lipschitzness, which extends the original notion
of Probabilistic Lipschitzness [BDSSU12].

Probabilistic Transfer Lipschitzness (PTL) Let µs and µt be re-
spectively the source and target distributions. Let φ : R → [0, 1]. A labeling func-
tion f : Ω → R and a joint distribution Π(µs, µt) over µs and µt are φ-Lipschitz
transferable if for all λ > 0:

Pr(x1,x2)∼Π(µs,µt) [|f(x1)− f(x2)| > λd(x1,x2)] ≤ φ(λ).

Theorem Let f∗ ∈ H be a Lipschitz labeling function that verifies the φ-PTL
assumption w.r.t. Π∗ and that minimizes the joint error errS(f∗) + errT (f∗) w.r.t
all PTL functions compatible with Π∗. For all λ > 0, with α = kλ, we have with
probability at least 1− δ that:

errT (f) ≤W1(P̂s,
ˆPft ) +

√
2
c′ log( 2

δ
)(

√
NS+
√
NT√

NSNT
) + errS(f∗) + errT (f∗) + kMφ(λ).
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Optimization problem

min
f∈H,γ∈∆

∑
i,j

γi,j
(
αd(xsi ,x

t
j) + L(ysi , f(xtj))

)
+ λΩ(f)

• Ω(f) is a regularization for the predictor f

• We propose to use block coordinate descent (BCD)/Gauss Seidel:
solve alternatively for γ and f .

• Provably converges to a stationary point of the problem.

Regression with JDOT
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Least square regression with quadratic regularization For a fixed
γ the optimization problem is equivalent to

min
f∈H

∑
j

1

nt

‖ŷj − f(x
t
j)‖2 + λ‖f‖2

where ŷj = nt

∑
j γi,jy

s
i is a weighted average of the source target values.

Classification with JDOT
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Multiclass classification with Hinge loss For a fixed γ the optimization
problem is equivalent to

min
fk∈H

∑
j,k

P̂j,kL(1, fk(x
t
j)) + (1− P̂j,k)L(−1, fk(x

t
j)) + λ

∑
k

‖fk‖2

where P̂ is the class proportion matrix P̂ = 1
Nt

γ>Ps. and Ps and Ys are defined from

the source data with One-vs-All strategy

Conclusion
• Powerful and versatile method, with applications to learn deep neural net-

works

• State-of-the art on several benchmarks, see paper for numerical results


