Domain Adaptation from shallow to deep learning tutorial
This is the page for the tutorial about Domain adaptation that I gave at the
Peyresq signal and image processing summer school.
Course
The support of the course can be downloaded here:
[PDF]
- Domain adaptation problem and generalization
- Supervised learning, divergences and Optimal Transport
- 50 shades of Data Shift
- Generalization under data shift
- The family of DA problems
- Classical Domain Adaptation methods
- Reweighting methods
- Subspace and alignment methods
- Other approaches
- Optimal Transport Domain Adaptation
- Deep Domain Adaptation
- Domain invariant feature learning : one classifier to rule them all
- Deep mapping approaches
- Joint Distribution Optimal Transport (JDOT) and DeepJDOT
- Domain Adaptation variants
- Multi-Source DA
- Heterogeneous DA
- Domain Adaptation in Practice
- How to validate with no labels ?
- Reality check for DA
Bibliography
Domain Adaptation
- Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence,
N. D. (2009). Dataset shift in machine learning. The MIT Press.
- Moreno-Torres, J. G., Raeder, T., Alaiz-Rodrı́guez, R., Chawla, N. V., and
Herrera, F. (2012). A unifying view on dataset shift in classification. Pattern recognition,
45(1):521–530.
- Kouw, W. M. and Loog, M. (2019). A review of domain adaptation without target labels. IEEE transactions on pattern analysis and machine intelligence,
43(3):766–785.
Theory of Domain Adaptation
- Ben-david, S., Blitzer, J., Crammer, K., and Pereira, O. (2006). Analysis of representations for domain adaptation. In Neural Information Processing Systems
(NIPS). MIT Press.
- Redko, I., Morvant, E., Habrard, A., Sebban, M., and Bennani, Y. (2020a). A survey on domain adaptation theory. arXiv preprint arXiv:2004.11829.
Domain Adaptation and deep learning
Practical Domain Adaptation
- Sugiyama, M., Krauledat, M., and Müller, K.-R. (2007). Covariate shift adaptation by importance weighted cross validation. Journal of Machine Learning Research, 8(5).
- You, K., Wang, X., Long, M., and Jordan, M. (2019). Towards accurate model selection in deep unsupervised domain adaptation. In International Conference on Machine Learning, pages
7124–7133. PMLR.
- Musgrave, K., Belongie, S., and Lim, S.-N. (2021). Unsupervised domain adaptation: A reality check. arXiv preprint arXiv:2111.15672.